

Grant Agreement No.: 101015857
Research and Innovation action
Call Topic: ICT-52-2020: 5G PPP - Smart Connectivity beyond 5G

Secured autonomic traffic management for a Tera of SDN flows

D3.2: Final evaluation of Life-cycle automation and high performance SDN components

Deliverable type R

Dissemination level PU

Due date 31/12/2022

Submission date 30/12/2022

Lead editor Georgios P. Katsikas (UBITECH)

Authors Dimitrios Klonidis, Panagiotis Famelis , Dimitrios Manolopoulos (UBI),
Ricard Vilalta, Lluis Gifre, Ricardo Martinez (CTTC), Juan Pedro
Fernandez-Palacios, Juan Carlos Caja, Oscar González-de-Dios, Pablo
Armingol, Antonio Pastor (TID), Stanislav Lange (NTNU), Alberto Mozo,
Luis de la Cal, Amit Karamchandani (UPM), Carlos Natalino (CHAL),
Sebastien Andreina, Konstantin Munichev, Giorgia Mason (NEC), Min
Xie, Jane Frances Pajo, Håkon Lønsethagen, Hanne Kristine Hallingby
(Telenor), Achim Autenrieth, José Juan Pedreño Manresa (ADVA), Mika
Silvola (Infinera), Michele Milano, Nicola Carapellese (SIAE), Javier
Moreno, Sergio González, Esther Garrido (ATOS), Sebastien Merle, Peer
Stritzinger (Stritzinger)

Reviewers Ricard Vilalta (CTTC), Georgios P. Katsikas (UBI)

Quality check team Adrian Farrel, Daniel King (ODC)

Work package WP3

Abstract

This deliverable leverages the preliminary evaluation of life-cycle automation and high performance
SDN components reported in D3.1, the final architecture design provided in D2.2, and the second
release of the core TeraFlowSDN components reported in MS3.3 to provide the final evaluation of the
core components of TeraFlowSDN. For each core component of the TeraFlowSDN architecture, this
deliverable provides (i) a short list of new features added in release v2, (ii) the final component design,
(iii) the final interfaces exposed to other TeraFlowSDN components or external entities, (iv) detailed

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 2 of 180

workflows highlighting key interactions of each component, and (v) evaluation of each component’s
essential functions, mainly focusing on performance and scalability aspects. In addition, this
deliverable is vital for validating TeraFlowSDN in WP5 for the remaining period of the project.

[End of abstract]

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 3 of 180

Disclaimer

This report contains material which is the copyright of certain TeraFlow Consortium Parties and may
not be reproduced or copied without permission.

All TeraFlow Consortium Parties have agreed to publication of this report, the content of which is
licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License1.

Neither the TeraFlow Consortium Parties nor the European Commission warrant that the information
contained in the Deliverable is capable of use, or that use of the information is free from risk, and
accept no liability for loss or damage suffered by any person using the information.

CC BY-NC-ND 3.0 License – 2021 - 2023 TeraFlow Consortium Parties

Acknowledgment

The research conducted by TeraFlow receives funding from the European Commission H2020
programme under Grant Agreement No 101015857. The European Commission has no responsibility
for the content of this document.

Revision History

Revision Date Responsible Comment
0.1 19.01.2022 Editor Initial document structure
0.2 21.11.2022 Editor Final design and interfaces per component
0.3 02.12.2022 Editor Final operational workflows per component
0.4 12.12.2022 Editor Final evaluation results per component
0.5
0.6

23.12.2022
26.12.2022

Editor
Q/A

Ready for revisions
Q/A Review by Daniel King

1.0 30.12.2022 Editor Submitted
1.1 15.10.2023 Editor After EC approval

1 http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 4 of 180

EXECUTIVE SUMMARY
This deliverable summarizes the activities of WP3 throughout the entire TeraFlow project. The
objective of this document is to provide: (i) a detailed design overview of each core TeraFlowSDN
component, including internal architecture and adopted technologies; (ii) a set of interfaces per
component with precise interactions both with other TeraFlowSDN components and external entities;
(iii) detailed workflows highlighting interactions between TeraFlowSDN components and external
systems and stakeholders, and (iv) evaluation results per component, focusing on performance and
scalability aspects. A list of new features per component is also provided to highlight the delta
between release v1 (early 2022) and the latest release, v2.

This document begins with an introductory section highlighting the purpose of this deliverable and
overall structure; and the relationship with other deliverables. Section 2 maps partners to core
TeraFlowSDN components and presents a taxonomy of these core components across key WP3
aspects detailed in Sections 3-6. Section 3 tackles components related to performance (T3.1), Section
4 describes components related to heterogeneous hardware and multi-layer service integration
(T3.2), Section 5 addresses components related to SDN automation and policy management (T3.3),
and Section 6 presents the slicing and multi-tenancy component (T3.4).

This document concludes in Section 7, while Section 8 serves as an annexe with technical details about
various components, such as data models and XML templates.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 5 of 180

Table of Contents
Executive Summary ... 4

Table of Contents .. 5

List of Figures .. 8

List of Tables ... 12

Abbreviations .. 13

1. Introduction .. 15

1.1. Objectives ... 15

1.2. Relation with Other Tasks and Deliverables ... 15

1.3. Deliverable Structure .. 16

2. Core TeraFlow OS Components’ Overview ... 17

3. High-Performance SDN Framework .. 18

3.1. Context Management Component ... 18

3.1.1. New Features/Extensions ... 18

3.1.2. Final Design ... 18

3.1.3. Final Interfaces .. 19

3.1.4. Final Operational Workflows .. 21

3.1.5. Evaluation ... 22

3.2. Monitoring Component .. 24

3.2.1. New Features/Extensions ... 24

3.2.2. Final Design ... 24

3.2.3. Final Interfaces .. 26

3.2.4. Final Operational Workflows .. 28

3.2.5. Evaluation ... 32

3.3. Traffic Engineering Component .. 40

3.3.1. New Features/Extensions ... 41

3.3.2. Final Design ... 41

3.3.3. Final Interfaces .. 43

3.3.4. Final Operational Workflows .. 43

3.3.5. Evaluation ... 44

3.4. Path Computation Component ... 46

3.4.1. New Features/Extensions ... 47

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 6 of 180

3.4.2. Final Design ... 47

3.4.3. Final Interfaces .. 48

3.4.4. Final Operational Workflows .. 49

3.4.5. Evaluation ... 50

4. Hardware and L0/L3 Multi-layer Integration .. 54

4.1. SBI Component ... 54

4.1.1. New Features/Extensions ... 54

4.1.2. Final Design ... 54

4.1.3. Device Plugins ... 55

4.1.4. Final Interfaces .. 79

4.1.5. Final Operational Workflows .. 79

4.1.6. Evaluation ... 80

4.2. Service Component ... 99

4.2.1. New Features/Extensions ... 99

4.2.2. Final Design ... 100

4.2.3. Final Interfaces .. 110

4.2.4. Final Operational Workflows .. 116

4.2.5. Evaluation ... 120

4.3. Forecaster Component ... 127

4.3.1. New Features/Extensions ... 127

4.3.2. Final Design ... 128

4.3.3. Final Interfaces .. 128

4.3.4. Final Operational Workflows .. 129

4.3.5. Evaluation ... 129

5. SDN Automation ... 132

5.1. Automation (ZTP) Component .. 132

5.1.1. New Features/Extensions ... 132

5.1.2. Final Design ... 132

5.1.3. Final Interfaces .. 133

5.1.4. Final Operational Workflows .. 135

5.1.5. Evaluation ... 139

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 7 of 180

5.2. Policy Management Component .. 142

5.2.1. New Features/Extensions ... 143

5.2.2. Final Design ... 143

5.2.3. Final Interfaces .. 146

5.2.4. Final Operational Workflows .. 147

5.2.5. Evaluation ... 156

6. Transport Network Slicing and Multi-tenancy .. 160

6.1. Slice Management Component .. 160

6.1.1. New Features/Extensions ... 160

6.1.2. Final Design ... 160

6.1.3. Final Interfaces .. 161

6.1.4. Final Operational Workflows .. 162

6.1.5. Evaluation ... 163

7. Conclusions ... 166

8. ANNEX ... 167

8.1. XML templates .. 167

References .. 179

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 8 of 180

List of Figures
Figure 1: Context workflow ... 22
Figure 2: Timeseries (minutes) of queries on the database cluster ... 22
Figure 3: Timeseries (minutes) of queries on a) the faulty node b) a healthy node 23
Figure 4: Architecture of the monitoring component .. 25
Figure 5: An example workflow of a generic definition of a KPI and its data visualization in Grafana 29
Figure 6: Exemplary workflow of a generic subscription loop .. 30
Figure 7: Exemplary workflow of a generic alarm definition and its related loop 31
Figure 8: Average ingestion latency of time ordered samples ... 32
Figure 9: Average ingestion latency of time unordered samples ... 33
Figure 10: Average query latency ... 34
Figure 11: Average ingestion latency with multiple concurrent processes .. 35
Figure 12: Average query latency with multiple concurrent processes ... 36
Figure 13: Insertion time with multiple commit intervals and a fixed maximum number of
uncommitted rows .. 38
Figure 14: Insertion time with multiple maximum number of uncommitted rows values and a fixed
commit Interval ... 38
Figure 15: evaluation of the ingestion latency of the IncludeKpi gRPC method 39
Figure 16: evaluation of the query latency of the QueryKpiData gRPC method 40
Figure 17: High-level design of the Traffic Engineering component .. 42
Figure 18: TE Component Supervision Tree .. 42
Figure 19: Traffic Engineering sequence diagram ... 44
Figure 20: evaluation of the segment routing creation time .. 45
Figure 21: evaluation of the segment routing update time ... 45
Figure 22: evaluation of the segment routing flow management delay .. 46
Figure 23: Architecture of the PathComp component. .. 47
Figure 24: Workflow between Service and PathComp Components to request/respond to a new
incoming network connectivity request ... 50
Figure 25: REST API Front-End / Back-End PathComp Request Content. ... 51
Figure 26: REST API Front-End / Back-End PathComp Response Content. ... 52
Figure 27: Transport Network Topology for PathComp Delay Performance Evaluation. 53
Figure 28: CDF for the PathComp Delay. .. 53
Figure 29: Architecture of the Device component ... 55
Figure 30: Architecture of the Device component’s Transport API Driver ... 56
Figure 31: Example TAPI Create Connectivity Service. ... 58
Figure 32: Microwave driver plugin design ... 59
Figure 33: Architecture of the Device component’s OpenConfig Driver. ... 61
Figure 34: NETCONF Layering. .. 62
Figure 35: gNMI architecture driver plugin... 70
Figure 36: Architecture of the Device component’s P4 driver plugin. ... 73
Figure 37: Required steps for a P4 SDN controller to install a P4 program on a P4 device. 74
Figure 38. TeraFlowSDN device drivers .. 75
Figure 39. Infinera XR Optics point-to-multipoint concept .. 76
Figure 40. XR constellation management solution ... 76
Figure 41. TeraFowSDN and XR Network emulator environment .. 77
Figure 42 TeraFlowSDN and XR constellation 400G/VTI-mode environment 78

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 9 of 180

Figure 43: Exemplary workflow of a generic device configuration... 80
Figure 44: CDF for the Emulated Device Driver Delay. ... 81
Figure 45: CDF for the Emulated Device Driver Delay (only L2 services). ... 82
Figure 46: CDF for the Emulated Device Driver Delay (only L3 services). ... 82
Figure 47: CDF for the Transport API Device Driver Delay. ... 83
Figure 48: MW Transport Network Topology. .. 84
Figure 49: Test “mw-service” on the MW controller configured by TeraFlow controller. 84
Figure 50: Test service “mw-service” configured on device 192.168.27.139. 85
Figure 51: Test service “mw-service” configured on device 192.168.27.140. 85
Figure 52: WireShark capture of communication between TeraFlow controller and MW controller. 85
Figure 53: CDF for the MicroWave Device Driver Delay. .. 86
Figure 54: Topology used to assess the OpenConfig Device Driver. ... 87
Figure 55: List of Services configured by TeraFlowSDN using OpenConfig Driver................................ 88
Figure 56: CDF for the OpenConfig Device Driver Delay... 90
Figure 57: Latency to install P4 device configuration (SetConfig RPC) with exponentially increasing
number of rules (1,10,100,1000). ... 91
Figure 58: Latency to retrieve P4 device configuration (GetConfig RPC) with exponentially increasing
number of rules (1,10,100,1000). ... 92
Figure 59: Latency to delete P4 device configuration with exponentially increasing number of rules
(1,10,100,1000). .. 92
Figure 60: Latency to install 1000 rules in total atop P4 topologies of increasing size. 94
Figure 61: Latency to retrieve 1000 rules in total atop P4 topologies of increasing size. 95
Figure 62: Latency to delete 1000 rules in total atop P4 topologies of increasing size. 96
Figure 63. IPM XR Constellation reference setup for TeraFlow XR driver evaluation 96
Figure 64. Wireshark capture from TeraFlowSDN and IPM TLS encrypted communication on
SetConfig() operation. ... 98
Figure 65. XR driver performance distribution chart. ... 99
Figure 66: Architecture of the Service component. .. 100
Figure 67: Overall L3NM Tree Structure. .. 101
Figure 68: VPN Profiles Subtree Structure. ... 102
Figure 69: VPN Services Subtree Structure. .. 102
Figure 70: VPN Node Subtree Structure. .. 103
Figure 71: VPN Node Subtree Structure. .. 104
Figure 72: VPN Network Access Subtree Structure. ... 104
Figure 73: Overall L2NM Tree Structure. .. 105
Figure 74: VPN VPN Profiles Subtree .. 106
Figure 75: VPN VPN Service Subtree ... 106
Figure 76: VPN Global Parameters Profiles Subtree. .. 107
Figure 77: VPN Nodes Subtree. ... 108
Figure 78: VPN Network Access Subtree. ... 108
Figure 79: P4 L2NM service handler on an example P4-based topology. .. 109
Figure 80: Code snippet with P4 rule template using configurable endpoints. 110
Figure 81: L2VPN functional requirements. .. 112
Figure 82: L3VPN functional requirements. .. 114
Figure 83: Generic CreateService workflow.. 116
Figure 84: Generic UpdateService workflow. ... 117
Figure 85: Generic DeleteService workflow. ... 118

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 10 of 180

Figure 86: Example Multi-Layer Network. .. 118
Figure 87: Generic TaskScheduler::Execute workflow. ... 120
Figure 88: CDF for the L2VPN Network Model Service Handler with OpenConfig Delay. 122
Figure 89: CDF for the L3VPN Network Model Service Handler with OpenConfig Delay. 123
Figure 90: Latency to establish 1-5 L2NM services atop pairs of P4 devices. 124
Figure 91: Latency to tear 1-5 L2NM services down atop pairs of P4 devices. 125
Figure 92: CDF for the MicroWave Service Handler Delay. .. 126
Figure 93: CDF for the Transport API Service Handler Delay. ... 127
Figure 94 Traffic forecasting with SDN controller. Source of sample network: [SDNlib10] 128
Figure 95 Forecaster Sequence Diagram .. 129
Figure 96 CDF of traffic forecasting delay ... 130
Figure 97 Example of traffic forecast for de-at link .. 131
Figure 98 Example of traffic forecast for hr-at link ... 131
Figure 99: Overview of the final design of the TeraFlowSDN Automation component. 133
Figure 100: Zero-Touch Provisioning of a new device into TeraFlowSDN. ... 136
Figure 101: Zero-Touch Update of a device into TeraFlowSDN. ... 137
Figure 102: Zero-Touch Deletion of a device from TeraFlowSDN. ... 138
Figure 103: Zero-Touch add benchmark using an exponentially increasing number of emulated
devices. ... 140
Figure 104: Zero-Touch update benchmark using an exponentially increasing number of emulated
devices. ... 141
Figure 105: Zero-Touch deletion benchmark using an exponentially increasing number of emulated
devices. ... 142
Figure 106: Overview of the final design of the TeraFlowSDN Policy component. 143
Figure 107: Internal state machine of the TeraFlowSDN Policy component. 146
Figure 108: Service-level policy creation through the TeraFlowSDN policyAddService RPC. 148
Figure 109: Service-level policy subscription. ... 149
Figure 110: Service-level policy triggering and enforcement. .. 150
Figure 111: Device-level policy creation. .. 151
Figure 112: Device-level policy triggering and enforcement. ... 152
Figure 113: Policy assessment. ... 153
Figure 114: Policy update for service-level and device-level policies. .. 154
Figure 115: Policy deletion for service-level and device-level policies. .. 155
Figure 116: Service-based policy add benchmark using an exponentially increasing number of
incoming policy add requests. .. 157
Figure 117: Service-based policy update benchmark using an exponentially increasing number of
incoming policy update requests. ... 158
Figure 118: Generic policy benchmark using an exponentially increasing number of incoming policy
update requests. ... 159
Figure 119 Architecture of the Slice component .. 160
Figure 120 Slice JSON request based on [Wu22] .. 161
Figure 121 Workflow to provide slice grouping .. 162
Figure 122: CDF for the Slice component Delay. .. 163
Figure 123 Number of clusters convergence after K-means application ... 164
Figure 124 Example of slices grouped in two clusters .. 165

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 11 of 180

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 12 of 180

List of Tables
Table 1: Mapping core TeraFlow components to WP3 tasks and the contributing partners. 17
Table 2 Context component interfaces for Context instances ... 19
Table 3 Context component interfaces for Topology instances ... 19
Table 4 Context component interfaces for Device instances ... 20
Table 5 Context component interfaces for Link instances ... 20
Table 6 Context component interfaces for Service instances .. 20
Table 7 Context component interfaces for Slice instances ... 21
Table 8 Context component interfaces for Connection instances ... 21
Table 9 Context component interfaces for Policy instances... 21
Table 10: gRPC interface definition for Monitoring component. ... 26
Table 11: Monitoring management API methods. ... 26
Table 12: Monitoring Metrics API methods. ... 27
Table 13 TE component interface methods .. 43
Table 14: gRPC PathComp interfaces .. 48
Table 15: REST API for the Front-End – Back-End modules of the PathComp 49
Table 16: List of RPCs supported by the Emulated TeraFlowSDN device driver................................... 56
Table 17: List of RPCs supported by the OLS ONF TAPI TeraFlowSDN device driver. 57
Table 18: List of the supported functions of the MW Device Drivers ... 59
Table 19: List of RPCs supported by the NETCONF protocol. ... 62
Table 20: gNMI supported GRPCs ... 71
Table 21: List of RPCs supported by the P4 TeraFlowSDN device driver. ... 74
Table 22. XR Constellation driver RPCs ... 78
Table 23. MicroWave Test Service Specifications ... 84
Table 24. Configuration of Packet Routers done by TeraFlowSDN OpenConfig Driver 88
Table 25. Example of IPM connection creation request ... 97
Table 26. Example of IPM connection creation response .. 97
Table 27. Example IPM delete request-response ... 97
Table 28: RPCs implemented by the L2NM P4 service handler .. 115
Table 29: RPCs implemented by the MW service handler.. 115
Table 30: RPCs implemented by the TAPI service handler ... 115
Table 31 Forecaster interface definition ... 129
Table 32: Service interface definition for the Automation component. .. 134
Table 33: Events’ publish-subscribe interface for the Automation component................................. 134
Table 34: Key elements of a basic policy rule object. ... 144
Table 35: Service interface definition for the Policy Management component. 147
Table 36: Policy rule used for the benchmarking of the service-based policy add/update/delete
operations. .. 156
Table 37: Service interface definition for the Slice component ... 161

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 13 of 180

Abbreviations
5G Fifth Generation
5G-PPP 5G Infrastructure Public Private Partnership
ABNO Application Based Network Optimization
API Application Programming Interface
ASIC Application-Specific Integrated Circuit
B5G Beyond 5G
BGP Border Gateway Protocol
BSS Business Support System
DB Database
E2E End-to-End
ECA Event-Condition-Action
FPGA Field-Programmable Gate Array
FRR Free-Range Routing
gNMI gRPC Network Management Interface
gNOI gRPC Network Operations Interface
gRPC gRPC Remote Procedure Call
HTTP Hypertext Transfer Protocol
IETF Internet Engineering Task Force
I/O Input-Output
IP Internet Protocol
JSON JavaScript Object Notation
KPI Key Performance Indicator
L1 Layer 1
L2 Layer 2
L3 Layer 3
L3NM Layer 3 Network YANG Model
LSP Label Switched Path
MS Milestone
MW Microwave
NBI North-Bound Interface
NOS Network Operating System
OAS OpenAPI Specification
OC OpenConfig
OLS Open Line System
ONF Open Networking Foundation
ONOS Open Network Operating System
OS Operating System
OSPF Open Shortest Path First
OSS Operation Support System
P4 Programming Protocol-independent Packet Processors
PCE Path Computation Element
PCEP Path Computation Element Protocol
QoS Quality of Service
REST Representational State Transfer
RPC Remote Procedure Call
SBI South-Bound Interface
SDN Software-Defined Networking
SDO Standards Development Organization

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 14 of 180

SLA Service-Level Agreement
SLE Service-Level Expectation
SLI Service-Level Indicator
SLO Service-Level Objective
SQL Structured Query Language
SR Segment Routing
TAPI Transport API
TE Traffic Engineering
TED Traffic Engineering Database
TFS TeraFlow SDN
VLAN Virtual Local Area Network
VPN Virtual Private Network
WP Work Package
XML eXtensible Markup Language
ZTP Zero-Touch Provisioning

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 15 of 180

1. Introduction
TeraFlowSDN is a novel software-defined networking (SDN) controller architecture aiming at
capabilities for beyond fifth generation (B5G) network deployment. In this context, TeraFlowSDN
bridges critical gaps in state-of-the-art SDN controllers in four distinct areas organized as WP3 tasks:

• Focus Area 1 (T3.1): high-performance control plane operations through a revolutionary
cloud-native network operating system (NOS) design, based on distributed and fully
disaggregated microservices;

• Focus Area 2 (T3.2): native support for key transport technologies, such as Internet Protocol
(IP), optical, and microwave (MW), as well as emerging next-generation SDN technologies,
such as the programmable protocol-independent packet processors (P4);

• Focus Area 3 (T3.3): automated, zero-touch provisioning (ZTP) of network services and
service-level and device-level policy management;

• Focus Area 4 (T3.4): multi-tenant network slicing as a service coupled with service-level
agreement (SLA) requirements.

1.1. Objectives

The purpose of this deliverable (D3.2) is threefold. The first objective of the deliverable is to provide
core TeraFlowSDN components for addressing the four areas introduced above. This is done by
mapping all core TeraFlowSDN components to the various WP3 tasks (each task corresponds to a
section between Section 3 and Section 6 of this document), while providing fundamental concepts
and a detailed design overview per component. The second objective is to position all core
TeraFlowSDN components within the same ecosystem, thus prescribing how they communicate with
each other and communication with external entities and systems. This is achieved by associating each
component description with a dedicated sub-section describing its interfaces and another sub-section
detailing essential workflows. Finally, this deliverable's third objective is to evaluate the features of
the core TeraFlowSDN components through another sub-section per component outlining
performance and scalability tests.

1.2. Relation with Other Tasks and Deliverables

This deliverable complies with the latest changes in the TeraFlowSDN architecture as per D2.2 “Final
requirements, architecture design, business models and data models” [4] to present an extended
version of D3.1 [5]. In D3.1, a preliminary version of the core TeraFlowSDN components was presented
along with a preliminary evaluation for some of these components, based on the first TeraFlowSDN
source code release as per MS3.2 “Code freeze for TeraFlow OS components (v1)” [2].

In this final WP3 deliverable, the final version of each core TeraFlowSDN component is documented,
based on the latest source code developments that comprise the second TeraFlowSDN release in
MS3.3 “Code freeze for TeraFlow OS release components (v2)” [3].

This final core TeraFlowSDN release will act as a basis for accommodating the TeraFlowSDN
components reported in D4.2 “Final evaluation of TeraFlow security and B5G network integration” [6]
expected to be delivered on January 2023. Moreover, the final TeraFlowSDN platform-as-a-whole
(combined WP3 and WP4 components) will be used to validate the various scenarios reported in WP5

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 16 of 180

in the context of D5.2 “Implementation of pilots and first evaluation” [7] and D5.3 “Final
demonstrators and evaluation report” [8].

1.3. Deliverable Structure

In the rest of this deliverable, Section 2 presents an overview of the core TeraFlowSDN components
that comprise the entire WP3. Sections 3, 4, 5, and 6 highlight the design overview, interfaces,
workflows, and evaluation results of the various core TeraFlowSDN components across the four tasks
in WP3, respectively. Section 7 concludes this work. Finally, Section 8 (Annex) reports data models and
XML templates for specific TeraFlowSDN components.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 17 of 180

2. Core TeraFlow OS Components’ Overview
This section provides an overview of the core TeraFlow OS components in the context of WP3. Table
1 shows how these components are mapped to the various WP3 tasks and the corresponding partners
carrying out their design, implementation, and preliminary evaluation during the project's first year.

Table 1: Mapping core TeraFlow components to WP3 tasks and the contributing partners.

WP3 Task Component Name Involved Partners
T3.1 Context Management CTTC, TID

Monitoring ATOS
Traffic Engineering STR
Path Computation CTTC
Auto Scaling Features covered by

Kubernetes Orchestrator
(see MS3.2)

Load balancing

T3.2 South-bound Interface
(SBI)

CTTC, TID, UBI, SIAE, INF,
ADVA

Service CTTC, TID, UBI, SIAE, INF
Forecaster CTTC

T3.3 Automation or ZTP UBI
Policy Management UBI, ODC

T3.4 Slice Management ADVA, CTTC

In the following technical sections:

• Section 3 deals with components related to SDN performance, context management (Section
3.1), monitoring (Section 3.2), traffic engineering (Section 3.3), and path computation (Section
3.4). As noted in Table 1 and MS3.2 [2], auto-scaling and load-balancing components are
provided by the Kubernetes orchestrator framework, which serves as a deployment engine
for the TeraFlow microservices;

• Section 4 presents hardware and multi-layer service integration components, namely the SBI
component with various driver plugins for different SDN devices (Section 4.1), the Service
component with multiple service handlers for key service types (Section 4.2), and the
Forecaster component (Section 4.3);

• Section 5 introduces the zero-touch device provisioning (ZTP) component (Section 5.1) as
well as the policy management component (Section 5.2); and

• Section 6 presents the slice management component.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 18 of 180

3. High-Performance SDN Framework
This section provides the design overview, interfaces, operational workflows, and evaluation results
of the core TeraFlowSDN components of T3.1, i.e., the Context Management component (see Section
3.1), the Monitoring component (see Section 3.2), the Traffic Engineering (TE) component (see Section
3.3), and the Path Computation component (see Section 3.4).

3.1. Context Management Component

The context component is the single entry point to the necessary operations for reading, updating, or
removing elements from the TeraFlowSDN controller database. Context handles objects such as
topologies, devices, links, services, and connections. The TeraFlowSDN components require access to
these objects to provide the necessary functionalities.

3.1.1. New Features/Extensions

A complete internal re-design of the component has been necessary to include self-replication and
scalability of the component’s database. Also, novel topics are included to serve as a state database
for several components. The new main features in release 2 are the following:

• Context Component replication. The internal database has been modified to allow
distribution. We also include a NewSQL database: CockroachDb.

• We have reviewed and extended protocol buffers definitions that were required by other
components:

o Add support for constraints in Service and SBI Components;
o Add service constraints to path computation;
o Add support for Inventory;
o Added Policy definitions for permanent storage of policies from Policy component;
o Added support for ACL in Service.

3.1.2. Final Design

The Context micro-service is where the NewSQL database resides. It is based on a distributed
architecture, where the key spaces of the tables are split into continuous ranges, called shards. The
ranges are then replicated on at least two nodes. This way, if a node stops functioning, there is at least
another copy of the data stored on other nodes and reads/writes can still be served.

A consensus algorithm is used to spread the changes and synch changes across nodes before the final
commit to maintain consistency across all database shards.

Depending on the structure, we can identify two consensus algorithms, leader-less or leader-based
architecture, which most distributed databases rely on. Paxos and Raft consensus algorithms are the
two most used. Paxos has been one of the first algorithms to provide consistent and fault-tolerant
distributed consensus, although Raft is usually more used due to its simplicity. Fundamentally, at high
level, both algorithms base their functioning on electing a leader for each of the shards of the
database. All changes in the shard must be taken out by the leader, and most followers must

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 19 of 180

acknowledge this change before the change is finally committed. When a leader goes down the other
nodes that take part in the shard must achieve a quorum to elect a new leader.

3.1.3. Final Interfaces

Context offers many interfaces to all other TeraFlowSDN components. We have divided the
interfaces into the following topics or categories:

• Context
• Topology
• Device
• Link
• Service
• Slice
• Connection
• Policies
• ACL

3.1.3.1. Context
The final list of RPC methods exported by the context service to handle context objects are defined in
its data model and widely reported in the deliverable D2.2 [4]. In Table 2, we expose a summary of
the available RPCs in this interface.

RPC Method Name Parameters Results
ListContextIds ContextIdList
ListContexts ContextList
GetContext ContextId Context
SetContext Context ContextId
RemoveContext ContextId
GetContextEvents stream ContextEvent

Table 2 Context component interfaces for Context instances

3.1.3.2. Topology
The final list of RPC methods exported by the context service to handle Topology objects are defined
in its data model and widely reported in the deliverable D2.2 [4]. In Table 3, we expose a summary of
the available RPCs in this interface.

RPC Method Name Parameters Results
ListTopologyIds ContextId TopologyIdList
ListTopologies ContextId TopologyList
GetTopology TopologyId Topology
SetTopology Topology TopologyId
RemoveTopology TopologyId
GetTopologyEvents stream TopologyEvent

Table 3 Context component interfaces for Topology instances

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 20 of 180

3.1.3.3. Device
The final list of RPC methods exported by the context service to handle Device objects are defined in
its data model and widely reported in the deliverable D2.2 [4]. In Table 4, we expose a summary of
the available RPCs in this interface.

RPC Method Name Parameters Results
ListDeviceIds DeviceIdList
ListDevices DeviceList
GetDevice DeviceId Device
SetDevice Device DeviceId
RemoveDevice DeviceId
GetDeviceEvents stream DeviceEvent

Table 4 Context component interfaces for Device instances

3.1.3.4. Link
The final list of RPC methods exported by the context service to handle Link objects are defined in its
data model and widely reported in the deliverable D2.2 [4]. In Table 5, we expose a summary of the
available RPCs in this interface.

RPC Method Name Parameters Results
ListLinkIds LinkIdList
ListLinks LinkList
GetLink LinkId
SetLink Link LinkId
RemoveLink LinkId
GetLinkEvents stream LinkEvent

Table 5 Context component interfaces for Link instances

3.1.3.5. Service
The final list of RPC methods exported by the context service to handle Service objects are defined in
its data model and widely reported in the deliverable D2.2 [4]. In Table 6, we expose a summary of
the available RPCs in this interface.

RPC Method Name Parameters Results
ListServiceIds ContextId ServiceIdList
ListServices ContextId
GetService ServiceId Service
SetService Service ServiceId
UnsetService Service ServiceId
RemoveService ServiceId
GetServiceEvents stream ServiceEvent

Table 6 Context component interfaces for Service instances

3.1.3.6. Slice
The final list of RPC methods exported by the context service to handle Slice objects are defined in its
data model and widely reported in the deliverable D2.2 [4]. In Table 7, we expose a summary of the
available RPCs in this interface.

RPC Method Name Parameters Results

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 21 of 180

ListSliceIds ContextId SliceIdList
ListSlices ContextId SliceList
GetSlice SliceId Slice
SetSlice Slice SliceId
UnsetSlice Slice SliceId
RemoveSlice SliceId
GetSliceEvents stream SliceEvent

Table 7 Context component interfaces for Slice instances

3.1.3.7. Connection
The final list of RPC methods exported by the context service to handle Connection objects are defined
in its data model and widely reported in the deliverable D2.2 [4]. In Table 8, we expose a summary of
the available RPCs in this interface.

RPC Method Name Parameters Results
ListConnectionIds ServiceId ConnectionIdList
ListConnections ServiceId ConnectionList
GetConnection ConnectionId Connection
SetConnection Connection ConnectionId
RemoveConnection ConnectionId
GetConnectionEvents stream

ConnectionEvent
Table 8 Context component interfaces for Connection instances

3.1.3.8. Policies
The final list of RPC methods exported by the context service to handle Policy objects are defined in
its data model and widely reported in the deliverable D2.2 [4]. In Table 9, we expose a summary of
the available RPCs in this interface.

RPC Method Name Parameters Results
ListPolicyRuleIds policy.PolicyRuleIdList
ListPolicyRules policy.PolicyRuleList
GetPolicyRule policy.PolicyRuleId policy.PolicyRule
SetPolicyRule policy.PolicyRule policy.PolicyRuleId
RemovePolicyRule policy.PolicyRuleId

Table 9 Context component interfaces for Policy instances

3.1.4. Final Operational Workflows

Figure 1 depicts the basic steps of the provisioning of a connectivity service. First, the OSS/BSS
requests creating a connectivity service to the Service module. Then, the request is recorded on the
database using the Context module. After it, the SBI module is asked to create the necessary
connections to provision the connectivity service, and again, they are stored on the database by the
Context module. The SBI module then provisions the connections to the ROADM to make the
connectivity service effective. Finally, the SBI module responds to the Service module that all
necessary connections have been created. It then responds to the OSS/BSS that the connectivity
service has been effectively provisioned.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 22 of 180

Figure 1: Context workflow

3.1.5. Evaluation

The TeraFlow controller runs on a virtual machine inside a computing node of the ADRENALINE cloud
infrastructure, running Ubuntu 21.10 with an Intel(R) Xeon(R) CPU E5-2420 @ 1.90GHz CPU, 64GB of
RAM, and 2TB of disk storage. As the cloud orchestrator, the software that manages and coordinates
the micro-services, Kubernetes 1.23, has been deployed.

The Context micro-service includes a NewSQL fault-tolerant distributed database named CockroachDB
version 21.2.4 with three database replicas deployed [18].

To validate the effectiveness and fault-tolerance of the system, the SDN controller has been loaded
with an optical connectivity service request generator. Up to 3000 connections have been generated
with an inter-arrival time of 0.1 seconds and a holding time of also 0.1 seconds, creating a system load
of 1 Erlang (number of simultaneous connectivity services). Note that this high number of optical
connectivity services is meant to prove the fault-tolerance in a worst-case scenario.

Figure 2: Timeseries (minutes) of queries on the database cluster

Figure 2 shows the time-series of the number of queries received on the aggregated database cluster
(i.e., including the three database replicas). The load was sent just after minute 0 to the SDN controller

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 23 of 180

and maintained the average number of queries (select, insert, and deletes) at approximately 20 per
second during the test duration. Inserts are executed twice for each optical connectivity service
request, as shown in Figure 1, one for the connectivity service and one for the physical connection.
Likewise, in the release phase, each insert has a delete, and a select precedes each delete to search
for the row to delete.

Figure 3: Timeseries (minutes) of queries on a) the faulty node b) a healthy node

Figure 3 shows the same time-series of queries on two of the three total nodes. Figure 3.a shows the
node on which a network error has been found, so the cloud orchestrator has restarted the virtual
machine. It can be seen that just before minute 4, the database node stopped serving requests, and
after the node had restarted again, it continued to serve the requests. Figure 3.b shows the healthy
node.

It can be seen that at the same time the faulty node went down, the healthy node experienced a
sudden peak in requests. This is due to the load balancing of the database. As the data is replicated
and distributed across different nodes, there will always be a node that can serve the requests that
the problematic node cannot without compromising data integrity. Finally, when the faulty node
resumes its operation, around 40 seconds after the reset, the load is again balanced between the
three nodes until the end of the test.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 24 of 180

3.2. Monitoring Component

The monitoring component is the core of the TeraFlow SDN (TFS) system devoted to the management,
storage and access metrics in the shape of Key Performance Indicators (KPIs). It provides a gRPC API
to export its related functionalities to be exploited by other components or agents within the TeraFlow
SDN controller. KPIs drive the monitoring model where external actors can define their own generic,
ad-hoc and vendor-independent KPIs, as well as alarms and subscriptions associated with those KPIs.
The primary purposes to be addressed by the monitoring component are listed below:

• Generate and manage multiple metrics and KPIs;
• Enable external KPI subscriptions to timely serve monitoring data;
• Definition, management and provision of ad-hoc alarms attached to the KPIs;
• Automatic integration with external time-series visualization tools.

3.2.1. New Features/Extensions

The evolution of the monitoring component concerning what was reported in the last deliverable D3.2
[2] has focused on a three-fold approach:

• Expanding the set of functionalities to cover the monitoring requirements;
• Improve overall component stability and performance;
• Enhance horizontal scalability to support highly loaded scenarios.

Based on the roadmap, the monitoring component has evolved, providing new functionalities and
features and are now integrated. The enhancements are summarized as follows:

• Evolution of the monitoring protobuf data model to support subscriptions and alarms;
• New RPC methods to export new functionalities according to the data model update;
• New distributed and scalable time-series database (QuestDB) to store the monitoring data

aimed at improving overall performance;
• Definition and implementation of subscription subsystem;
• Definition and implementation of alarm subsystem;
• Expand management database structure and features to support the management of the

subscription and alarm subsystems.

3.2.2. Final Design

The design is driven by key performance indicators (KPIs), where external actors can define their own
generic, vendor-agnostic KPIs and the alarms and subscriptions associated with those KPIs. KPIs,
alarms and subscriptions are registered internally and managed through an internal management
Database. In addition, external sources can ingest monitoring data associated with the KPIs into a high-
performance time-series database via the monitoring component. Finally, it supports integrating
multiple third-party data visualisation tools, such as Grafana. This architecture considers two main
blocks, the Monitoring Core and the MetricsDB, designed to be deployed in separate containers linked
to the same Monitoring component, depicted in the Figure 4 below:

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 25 of 180

Figure 4: Architecture of the monitoring component

• Monitoring Core

The brain of the TFS platform is the Monitoring component. It implements the necessary logic for
managing KPIs, subscriptions and alarms. Likewise, the Monitoring Core can be decomposed into
six main sub-modules according to its functional role:

o Monitoring Service is in charge of exporting the set of available RPC methods defined
in the monitoring data model to be requested by external entities by using gRPC
communication;

o Management API is the sub-module responsible for linking all the internal sub-
modules within the monitoring core. It can be seen as a gateway for the management
DB;

o Management Database supports internal management by storing information
associated with the definition of subscriptions, alarms, and KPIs organized in separate
SQL-based tables. Here, the models of the tables must have a concrete structure and
fields to be in line with the monitoring data models;

o Subscription Manager is responsible for managing the information of the subscribers,
and for coordinating the actions inside the Monitoring Core among the different sub-
components;

o Alarm Manager, like the subscription manager, is the sub-module where the internal
methods are implemented focused on alarm management;

o Metrics API is oriented to handle internal service-level communication procedures
between the Monitoring Core and the MetricsDB.

• Metrics Database

The MetricsDB is the other main functional block of the monitoring component, and it is designed
to deploy in separate containers to leverage its inherent distributed nature. Moreover, the main
goal of the MetricsDB is to store and record the information linked to the metrics/KPIs. To provide
full interoperability with the core monitoring block, the stored samples' structure is mapped to
the fields of the monitoring data model. In addition, the MetricsDB is directly integrated with

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 26 of 180

external data visualisation tool (e.g., Grafana), thus not only reducing the complexity of the
integration, but also minimising potential problems arising from low-level interoperability. Finally,
as exposed in the previous bullet, it exchanges information with the Monitoring Core block via the
Metrics API.

3.2.3. Final Interfaces

Regarding the monitoring connectivity, we consider three main interfaces in total: the monitoring
service gRPC interface, which permits external entities (e.g., TFS components) to request a broad set
of monitoring-related methods, and two internal interfaces, one focused on management interactions
driven by the management API module, and the MetricsDB interface devoted to exchange information
between the Monitoring Core and the MetricsDB blocks.

1. Monitoring service gRPC methods:

The final list of RPC methods exported by the monitoring service is defined by its data model
and widely reported in the deliverable D2.2 [4]. In the following Table 10, we expose a
summary of the available RPCs in this interface:

Table 10: gRPC interface definition for Monitoring component.

RPC Method Name Parameters Results
SetKpi KpiDescriptor KpiId
DeleteKpi KpiId context.Empty
GetKpiDescriptor KpiId KpiDescriptor
GetKpiDescriptorList context.Empty KpiDescriptorList
IncludeKpi Kpi context.Empty
MonitorKpi MonitorKpiRequest context.Empty
QueryKpiData KpiQuery RawKpiTable
SetKpiSubscription SubsDescriptor stream SubsResponse
GetSubsDescriptor SubscriptionID SubsDescriptor
GetSubscriptions context.Empty SubsList
DeleteSubscription SubscriptionID context.Empty
SetKpiAlarm AlarmDescriptor AlarmID
GetAlarms context.Empty AlarmList
GetAlarmDescriptor AlarmID AlarmDescriptor
GetAlarmResponseStream AlarmSubscription stream AlarmResponse
DeleteAlarm AlarmID context.Empty
GetStreamKpi KpiId stream Kpi
GetInstantKpi KpiId Kpi

2. Monitoring management API methods:

The available internal management API-oriented methods that can be used by the other
submodules of the Monitoring Core are defined in the ManagementDBTools class. Table 11
below lists their methods:

Table 11: Monitoring management API methods.

Method Name Parameters Results

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 27 of 180

create_monitoring_table - -
create_subscription_table - -
create_alarm_table - -
insert_KPI kpi_description,

kpi_sample_type,
device_id,
endpoint_id,
service_id,
slice_id,
connection_id

kpi_id

insert_subscription kpi_id,subscriber,
sampling_duration_s,
sampling_interval_s,
start_timestamp,
end_timestamp

subs_id

insert_alarm alarm_description,
alarm_name,
kpi_id,
kpi_min_value,
kpi_max_value,
in_range,
include_min_value,
include_max_value

alarm_id

delete_KPI kpi_id Bool
delete_subscription subs_id Bool
delete_alarm alarm_id Bool
get_KPI kpi_id kpi_descriptor
get_subscription subs_id subs_descriptor
get_alarm alarm_id alarm_descriptor
get_KPIS - list kpi_descriptor
get_subscriptions - list subs_descriptor
get_alarms - list alarm_descriptor
check_monitoring_flag kpi_id Bool
set_monitoring_flag kpi_id, flag Bool

3. Monitoring MetricsDB API methods:

The Monitoring-MetricsDB interface defines the potential interactions between the
Monitoring Core block with the MetricsDB. In this version of the component the role of the
MetricsDB is played by QuestDB [26] and the methods here presented are designed to exploit
the by-default QuestDB APIs according to the needs of the monitoring component. The
MetricsDBTools class and Monitoring-Metrics API methods are implemented and
summarised below. In the following Table 12, we document several relevant methods:

Table 12: Monitoring Metrics API methods.

Method Name Parameters Results
create_table - -
write_KPI time,

kpi_id,
-

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 28 of 180

kpi_sample_type,
device_id,
endpoint_id,
service_id,
slice_id,
connection_id,
kpi_value

run_query sql_query kpi_dataset
run_query_postgre postgre_sql_query kpi_dataset
get_raw_kpi_list kpi_id,

monitoring_window_s,
last_n_samples,
start_timestamp,
end_timestamp

kpi_dataset

get_subscription_data subs_queue,
kpi_id,
sampling_interval_s

kpi_list

get_alarm_data alarm_queue,
kpi_id,
kpiMinValue,
kpiMaxValue,
inRange,
includeMinValue,
includeMaxValue,
subscription_frequency_ms

kpi_list

3.2.4. Final Operational Workflows

In this section, we present three exemplary operational workflows involving the most common
monitoring features to be exploited by other TeraFlow components in a final shape. Those features
are exposed below.

4. KPI creation and data visualization:

This first operational workflow aims to create (“registration”) a new KPI requested by a generic TFS
component and its automatic data tracking from the data source to its display by an end-user in the
time-series-based data visualization tool Grafana. For simplicity, it is worth mentioning that the
example exposed in Figure 5 is only focused on a concrete workflow about creating KPIs associated
with retrieving monitoring data from real or emulated network devices. The definition and monitoring
of KPIs of other natures (e.g., based on services or connections rather than just devices) can be defined
similarly as in the workflows presented in deliverables D2.2 [4] and D5.2 [6].

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 29 of 180

Figure 5: An example workflow of a generic definition of a KPI and its data visualization in Grafana

Thus, the workflow depicted in Figure 5 is divided in the following stages:

1. KPI creation: In this preliminary step a concrete TFS component defines its own KPI in a
KpiDescriptor format. Based on its data model in a KpiDescriptor the requester can define the
KPI according to a KpiSampleType, DeviceId, ServiceId or ConnectionId among others. For the
sake of this example, we assume that the KPI is related to an existing DeviceId. The TFS
component, by using the monitoring client, executes the gRPC SetKpi method passing the
KpiDescriptor as a request message. Then the monitoring gRPC Service receives the requests
and tries to store the descriptor in the MgmtDB which assigns a KpiId in case the combination
of fields defined in the KpiDescriptor does not exist in the MgmtDB. Finally, the Monitoring
Service returns the KpiId to the TFS Component.

2. Request Monitoring the Kpi: Once the KpiID reaches the corresponding TFS component side,
it is enabled to request starting the monitoring in the corresponding device. To do so, it
triggers the MonitorKpi RPC via the monitoring client by passing the generate KpiId and for a
concrete monitoring time window and a sampling rate to get the data. Then, the request is
received by the monitoring component and processes the data attached to such KpiId. After
that, the monitoring service informs the device component about start monitoring the about
the concrete metrics in the concrete device according to the defined in the KpiDescriptor and
KpiMonitorRequest. Finally, the device component receives the KPI information and triggers a
parallel workflow to retrieve the actual device information from the system.

3. Collection KPI Data: in this stage the device component uses the corresponding SBI to request
the device associated to such DeviceId to start retrieving the given data and receives the data

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 30 of 180

periodically for every time iteration and for a given sampling rate. Then the device component
forwards the data to the monitoring service by executing the IncludeKpi method. After that,
the monitoring service ingests the monitoring data in the MetricsDB.

4. Plot data in Grafana: Finally, as the MetricsDB is automatically attached to the Grafana
instance, once the monitoring data is available at the MetricsDB it can be visualized by a user
in the Grafana dashboard.

5. KPI Subscription and data provisioning

The workflow presented in the next Figure 6 showcases a generic example of how a TFS component
can subscribe to a concrete KPI, previously defined and is being monitored.

Figure 6: Exemplary workflow of a generic subscription loop

The workflow is defined as follows:

1. Create Subscription: This workflow is only triggered after registering the given KPI and is
currently being monitored (see the first workflow). Like a KPI definition the TFS component
can define its subscription in a SubsDescriptor shape by setting the existing KpiId for a concrete
time interval and sampling rate compatible with the monitoring parameters or defining start
and end timestamps and sending that request by using the SetKpiSubscription method. The
request arrives at the monitoring component, where the Monitoring Service forwards the
request to the Subscription Manager. After internal checks to see if the subscription fits the
monitoring parameters, the MgmtDB assigns a unique SubsId, and the Monitoring Service
receives it.

2. Actvate Subscription Loop: then, in parallel, the Subscription Manager starts with the
monitoring loop to periodically query the MetricsDB about the monitoring data associated to
that KpiID and for a concrete time window defined in the SubsDescriptor. Then, this KpiData
is sent to the Monitoring Service to build the SubsResponse by attaching the KpiData and the

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 31 of 180

associated SubsId and replying to the subscriber. This stage is repeated periodically for the
time window defined in the SubsDescriptor.

6. Alarm definition and rule violation notification:

Here, in Figure 7 we explain the final exemplary workflow to use the alarm functionality exposed by
the monitoring service.

Figure 7: Exemplary workflow of a generic alarm definition and its related loop

This workflow is like the subscription one but with some critical differences specific to alarms. The
most obvious is that in subscriptions, the entire workflow relies on a single RPC method and in this
workflow, it is based on two, one to define the alarm and one to trigger it, the rationale about this
below:

• Create alarm: In this first stage a TFS component can define in an AlarmDescriptor an ad-hoc
alarm associated to an existing KPI. In this alarm descriptor is where the alarm rules are set
that the value thresholds or intervals are defined as valid for that concrete KPI. Typically, the
TFS Component send a request to register the alarm (SetKpiAlarm) to the Monitoring Service
and the Alarm Manager processes it. In this case, if the alarm is properly registered in the
MgmtDB the AlarmId is returned to the TFS component in this first stage. This is done to
provide more flexibility on where and when to activate the defined alarm and permitting to
use that alarm not only to the same subscriber but multiple, thus, expanding the potential
scenarios to use it;

• Activate alarm: Once the alarm is properly registered in the monitoring system, a TFS
component can have some freedom to define when to check if a KPI is under the alarm
conditions. To do so, the TFS component executes the RPC GetAlarmResponseStream by

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 32 of 180

passing the given AlarmId for a concrete time window and a concrete frequency (set in the
AlarmSubscription message). This way, the Alarm Manager can periodically check the kpi
values to see if the conditions in this time interval are violated. If so, the Monitoring Service
responds to the TFS Component with the values and timestamps that overcome the alarm
conditions. This process is repeated according to the AlarmSubscription for a concrete time
window and frequency.

3.2.5. Evaluation

Based on the recent updates of the Monitoring component architecture, this performance evaluation
is focused on the newer metrics database (QuestDB), aiming to evaluate its high performance and
high scalability capabilities compared to the previous choice (InfluxDB). The detailed performance
evaluation in this section has been assessed in a machine running Windows 10 and powered by an
Intel Core i5-1145G7 and 16GB of RAM. For the databases, we have used the latest Docker containers
available at that moment in the official repositories (QuestDB v6.5.5 and InfluxDB v2.5.1) running in
the Windows official Docker Desktop app over the WSL 2 backend.

The initial tests of this performance evaluation aim to measure the time required by the databases to
ingest the multiple samples. We will compare the ingestion time of InfluxDB and the multiple ingestion
methods available in QuestDB, such as PostgreSQL, REST and Influx Line Protocol (ILP). This test will
measure the time needed to ingest 10², 10³ and 10⁴ time ordered samples as well as out-of-order
samples to measure the impact that ordering has in the data ingestion process.

Figure 8: Average ingestion latency of time ordered samples

Figure 8 shows the average ingestion time of ordered samples after 100 executions of the test. The
results confirm that QuestDB ingestion methods outperform InfluxDB, with PostgreSQL showing

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 33 of 180

better performance than REST and achieving the best performance when using ILP, being more than
two orders of magnitude faster than InfluxDB when ingesting 10⁴ samples.

Figure 9: Average ingestion latency of time unordered samples

Figure 9 shows the second test results, focusing this time on ingesting unordered samples. For this
test the table of the QuestDB has been partitioned by day, and the timestamp of the ingested samples
has been randomly generated over the last 10⁷ seconds, a timeframe big enough to force and stress
the ingestion process to write data over a big number of table partitions. The results depicted in Figure
9 follow the same pattern than Figure 8, with QuestDB outperforming InfluxDB, especially when using
ILP.

The next test will focus on query performance, measuring the time required to request 10³, 10⁴, 10⁵
and 10⁶ samples to the databases in a single query. We will compare the query latency of InfluxDB
using the default query protocol of InfluxDB 2.X called Flux, and the supported query protocols by
QuestDB, PostgreSQL wire protocol and REST. ILP will not be tested for this test since it is just an
ingestion protocol and does not support queries.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 34 of 180

Figure 10: Average query latency

The results are depicted in Figure 10, showing the average query latency over 100 repetitions of the
test. The performance is consistent with the results previously presented, with QuestDB having much
better performance than InfluxDB, and PostgreSQL wire protocol being slightly faster than REST. Like
in the previous evaluations, QuestDB shows more than two orders of magnitude better performance
than InfluxDB for the bigger queries.

Once we tested the ingestion and query performance of isolated operations we decided to repeat the
same tests but in this case with multiple simultaneous operations, testing the scalability of the
databases when multiple concurrent access is required. The following concurrency tests are based on
executing multiple processes (10 and 100), ingesting and querying multiple samples per process
simultaneously to measure the scalability of the databases. The objective of these tests is to measure
the total time needed to finalize all the operations of all the simultaneous processes.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 35 of 180

Figure 11: Average ingestion latency with multiple concurrent processes

Figure 11 shows the results of the concurrent ingestion tests. The X-axis represents the number of
concurrent processes multiplied by the number of samples ingested per process, the Y-axis depicts
the average latency over 100 repetitions needed to ingest all the samples from all the concurrent
processes. Although, based on the results obtained from Figure 8 and Figure 9, we decided to ingest
only unordered samples since it is the most stressing operation for the databases, we have also
decided only to use ILP as the ingestion protocol for the QuestDB since it is by far the fastest ingestion
method. The results again show that QuestDB outperforms InfluxDB, having a minimum difference
higher than one order of magnitude, being even higher than two orders of magnitude when ingesting
10³ samples per process.

Figure 12 depicts the results of the concurrent query evaluation. Analogously, the figure represents
the number of concurrent processes multiplied by the number of queried samples per process in the
X axis, while in the Y axis represents the average latency over 100 executions required to query the
total number of samples from all the simultaneous processes. Similarly, to Figure 10 we have tested
PostgreSQL wire protocol and REST for the QuestDB and Flux for the InfluxDB. The results are
consistent with the previous ones, having by a little difference the best results with the QuestDB
PostgreSQL wire protocol followed by QuestDB REST, with both protocols clearly outperforming
InfluxDB. It is worth mentioning that InfluxDB could not handle the load of the last two tests, throwing
multiple exceptions of ReadTimeoutError making it impossible to finalize the tests.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 36 of 180

Figure 12: Average query latency with multiple concurrent processes

In light of the results mentioned above, it is fair to conclude that QuestDB offers far superior
performance and scalability capabilities than InfluxDB, a more suitable option to fulfil the
requirements of the TeraFlowSDN controller.

QuestDB offers multiple configuration parameters that can affect to the performance, in the following
lines we will analyze some of these parameters to optimize the performance for the TeraFlowSDN
controller.

As previously demonstrated, Influx Line Protocol (ILP) is the best ingestion method; it is the
recommended method in the QuestDB documentation [26] for high-performance applications. ILP is
a text protocol that runs over TCP, it is a one-way protocol just devoted to inserting data. ILP was
originally created for InfluxDB, QuestDB has adopted it with a minor modification: QuestDB uses ILP
as both serialization and the transport format, InfluxDB on the other hand uses HTTP as the transport
and ILP as serialization format. For this reason, the InfluxDB client libraries do not work with QuestDB.
QuestDB incorporates some mechanisms for ILP for reducing congestion and optimizing the insertion
of out-of-order data. The data insertion process in ILP can be divided in two different phases:

• Ingestion: when the data is received it is firstly kept in memory only, invisible for the queries.
Then, the QuestDB out-of-order algorithm detects, process and optimizes the data for the
next insertion phase, the commit;

• Commit: once the data is ingested and ordered by the out-of-order QuestDB engine it is
pushed to the database and becomes visible for the queries.

The most expensive task to perform in the insertion process is the commit, hence for optimal
performance the data commits should be minimized as much as possible, accumulating the data for a
time period that will allow sorting of the collected samples before they are committed to the database.
In order to optimize the insertion of data and control this waiting period QuestDB provides some

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 37 of 180

configurable parameters in the server side, such as the commit interval, the commit timeout and the
maximum number of uncommitted rows.

The commit lag is a value defined in milliseconds that has a significant impact on the insertion timing.
The commit interval fraction is just a constant that multiplies the commit lag value resulting in the
commit interval, the commit interval is the total waiting time applied each time a commit is performed
to the database. Therefore, after this waiting period the data samples older than the commit interval
value are committed and become visible for queries. The commit interval parameter should always
be considered in conjunction with the maximum number of uncommitted rows, which refers to the
maximum number of samples that can be ingested in memory without being committed to the
database. As a result, the commit delay will be defined by the value of these two parameters that is
reached faster. Consequently, we have evaluated the performance of QuestDB with different values
of the commit interval and the maximum number of uncommitted rows parameters, testing multiple
commit strategies.

The first commit strategy is the row-based commit, with this strategy the commit is performed when
the number of uncommitted samples reaches the value of the maximum number of uncommitted rows
parameter. The second commit strategy is the idle table timeout, when there is no data ingested after
a period of time the database force a commit after a timeout interval, this commit timeout interval
can be configured with two parameters the idle ms before writer release and the maintenance job
interval, the commit timeout is the result of the summation of these two parameters. Finally, the third
commit strategy is the interval-based, that is defined by the commit interval, as it is mentioned
previously the commit interval is a function of the commit lag and the commit fraction.

Figure 13 depicts the average insertion latency of multiple number of samples over 100 repetitions
with multiple values of the commit interval. The insertion latency is divided in the figure in two stages,
the ingest time (in solid dark color) and the commit time (in light color with crosshatching). For this
test we have fixed the maximum number of committed rows parameter with a value higher enough to
ensure that is never reached, 10⁶. The commit interval fraction is by default configured to 0.5, in this
evaluation we have tested three values for the commit lag, 1, 10 and 100 milliseconds resulting in a
commit interval of 0.5, 5 and 50 milliseconds. The figure shows an interesting and at the same time
intuitive result, for small data insertions (10 samples) the database performs better with lower values
of the commit interval. On the contrary, for big data insertions (10⁵ samples) the database performs
better with bigger values of the commit interval parameter, allowing more time to process the data
and therefore reducing the number of commits, offloading the database.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 38 of 180

Figure 13: Insertion time with multiple commit intervals and a fixed maximum number of uncommitted rows

Finally, Figure 14 also shows the average insertion latency of the multiple numbers of samples over
100 repetitions, but in this case, varying the value of the maximum number of uncommitted rows
parameter. Like in the previous figure 13, the insertion time is divided in ingestion time and commit
time. For this test we have fixed the commit lag parameter with a value higher enough to ensure that
is never reached, 10⁵ milliseconds. The figure demonstrates that for the ingestion of a small number
of samples (10) the commit strategy is based on the commit timeout, which is the reason why the
three bars have approximately the same commit time. On the contrary, for big data insertions (10⁵
samples) the database performs much better with bigger values of the maximum number of
uncommitted rows parameter since the number of commits is minimized.

Figure 14: Insertion time with multiple maximum number of uncommitted rows values and a fixed commit Interval

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 39 of 180

In the light of the above results, the QuestDB have been configured with a commit lag of 1000
milliseconds and a maximum number of uncommitted rows of 10000, these are the default values
adopted for TeraFlowSDN and the ones used in the tests performed for the first 5 figures of this
subsection and also in the forthcoming test.

Once we evaluated the performance of QuestDB [26], verifying that is a much faster and scalable
solution than InfluxDB, we aimed to evaluate the performance of the full Monitoring component,
including the gRPC server. For the following experiments, we have executed the full Monitoring
microservice and tested the gRPC methods using the Monitoring gRPC client from the same host
machine.

Therefore, since the ingestion is the most stressing operation, we decided to evaluate the IncludeKpi
gRPC method, which as can be seen in Section 3.2.3 is the method in charge of receiving the
monitoring samples through gRPC and ingesting them into the MetricsDB (QuestDB). For this
evaluation we decided to measure the latency overhead introduced by gRPC by measuring the
ingestion time of 1 sample directly in the QuestDB through ILP and using the IncludeKpi gRPC method
using the monitoring gRPC client. This experiment has been repeated 100 times and the results are
depicted in Figure 15, as can be seen in the CDFs the QuestDB standalone ingestion takes an average
time of 7.6 ms, while the IncludeKpi method (which involves the gRPC as well as the QuestDB) shows
an average ingestion latency of 11.9 ms. This figure demonstrates that the overhead introduced by
the gRPC server is minimum, around 4.3 ms on average.

Figure 15: evaluation of the ingestion latency of the IncludeKpi gRPC method

Finally, to measure the overhead introduced by gRPC for data querying, we evaluated the
performance of the QueryKpiData method. For this evaluation, we measured the time needed for
querying the last 10³ samples of a given KPI directly to the QuestDB and through the QueryKpiData
gRPC method using the Monitoring client. This test has been repeated 100 times and the results are
detailed in Figure 16. In this case the overhead latency introduced by gRPC is noticeably higher due to

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 40 of 180

the larger amount of transmitted data than the previous experiment (1 sample vs 10³ samples). The
average latency obtained for querying 10³ samples using the QueryKpiData gRPC was 105.4 ms
compared to 13.7 ms when directly querying the data to the QuestDB. As a result, in this experiment,
the average latency introduced by the monitoring component and the gRPC server was 91.7 ms. The
value is still a very low number considering the amount of data that is being transmitted, and is still
lower than the query latency results experienced when directly querying the InfluxDB (around 172 ms
in average), as can be seen in the evaluation performed previously in.

Figure 16: evaluation of the query latency of the QueryKpiData gRPC method

Ingesting and querying are the two main and basic operations of the Monitoring component, involved
in the data monitoring, alarming and subscription functionalities. Therefore, we can affirm that these
results are sufficient to evaluate the overall performance of the functionalities offered by the
TeraFlowSDN Monitoring component.

3.3. Traffic Engineering Component

The Traffic Engineering Component (TE) provides Segment Routing (SR) path computation over the
compatible infrastructure exposed by the Device component. It consolidates the devices in a Traffic
Engineering Database (TED) from the information exposed by the Context component. In addition, it
maintains and synchronizes the SR Label Switched Path (LSP) received from the devices and the ones
it creates when the Service Components request it. The communication channel between the TE
component and the other TeraFlow components (Service, Context and Device) is GRPC. Path
Computation Element Protocol (PCEP) is the protocol communication channel with the devices (client)
and TE component (server).

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 41 of 180

3.3.1. New Features/Extensions

The new release 2.0 component has been completely reengineered to provide complete integration
and support for traffic engineering using path computation element protocol (PCEP). Moreover, the
new features include:

• Integration with Service, Device, and Context components;
• TE workflow demonstration using emulated routers;
• Segment Routing paths are created using PCE-initiated LSPs.

3.3.2. Final Design

The TE component comprises two sub-applications: the TeraFlowSDN part which is in charge of all the
TeraFlow-specific logic, and the PCE part and handles all the generic path computation element logic
(as shown in Figure 17). The term “application” is derived from how Erlang Open Telecom Platform
(OTP) software packages are named.

• TeraFlowSDN Application:
o GRPC Handler:

Responsible for talking gRPC to other services and handling gRPC requests.
o API Server:

Responsible for the high-level TeraFlowSDN API and logic. It contains both the handler
for the TE service API and the proxy process to handle the other components API and
events.

o Smart Resolver:
Responsible for resolving segment routing path given a set of constraints.

• PCE Application:
o TED:

The traffic engineering database built from the context topology. It will be used by the
resolver to resolve a segment routing path.

o LSP DB:
The LSP database reflecting all the LSP created on the connected routers. It will be
used by the resolver to resolve a segment routing path.

o PCE Server:
Expose the PCE API to the routers and implements the PCEP protocol.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 42 of 180

Figure 17: High-level design of the Traffic Engineering component

As an Erlang Open Telecom Platform service, the TE component is designed for high concurrency and
high availability. Every process (worker) is supervised and part of a supervision tree. If case of an
unrecoverable error, the process is crashed, and its supervisor restarts it from a known working state,
as shown in Figure 18.

Figure 18: TE Component Supervision Tree

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 43 of 180

3.3.3. Final Interfaces

The final interface for the Traffic Engineering Component is described in Table 13. A Service
Component calls the gRPS method RequestLSP to setup a segment routing path. All the information
required for setting up the flow comes from the service configuration and the TED created from the
context’s topology. If a Service Component configuration changes, it can explicitly request the flow to
be updated by calling UpdateLSP. Calling DeleteLSP will remove the flow from all involved routers
when the service is terminated.

RPC Method Name Parameters Results
RequestLSP Service ServiceState
UpdateLSP ServiceId ServiceState
DeleteLSP ServiceId -

Table 13 TE component interface methods

3.3.4. Final Operational Workflows

This section exposes the workflow for the principal traffic engineering operations, as shown in Figure
19.

When starting the TE component, it will request the topology from the Context component, and then
retrieve all the devices and links in the topology to build the traffic engineering database. It will then
register for context events to update the TED when something changes.

To create a new segment-routing flow, the Service component call the RequestLSP method. The TE
component resolves the path taking into account the service configuration, the traffic engineering
database and the LSP database, it creates a new LSP and initiates it on the relevant router using PCEP.

When the Service component is terminated, it requests the removal of the segment routing LSP by
calling the DeleteLSP method, and the TE component will update the LSP database and remove the
LSP using PCEP.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 44 of 180

Figure 19: Traffic Engineering sequence diagram

3.3.5. Evaluation

The evaluation was made in a virtual machine and with a virtualized network setup with Linux
namespaces and Free-Range Routing services for the IS-IS network and the PCEP clients.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 45 of 180

Due to a discovered issue in the PCEP implementation of FRR, it has not been possible to benchmark
the concurrent creation of multiple flows. However, we will investigate and notify our findings on the
issue.

We measured the time to setup a unidirectional segment routing flow, and the time to update an
already existing flow. The time is stable and mostly comprised of the FRR process to set up the
segment routing path. Scalability in this context is highly dependent on the underlying network
infrastructure.

Figure 20: evaluation of the segment routing creation time

Figure 21: evaluation of the segment routing update time

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 46 of 180

Figure 22: evaluation of the segment routing flow management delay

3.4. Path Computation Component

The Path Computation Component (PathComp) is designed and implemented to offer a dedicated and
standalone entity for computing and to select the network resources when creating or modifying
new/existing network connectivity services. Note that this component was not introduced in the
former TeraFlow OS components reported in the previous D3.1 [5] [1].

The PathComp is fed by/relies on a set of inputs: i) the Context information entailing the
topology/domain devices, links, attribute, existing services, etc.; ii) the targeted network service
connectivity’s characteristics specifying the network endpoints (devices and ports) and demanded
requirements to be met in terms of guaranteed bandwidth, maximum latency, disjoint paths, etc.; and
iii) a specific performance objective to be optimized by the PathComp, e.g., attaining an efficient use
of the overall network resources, minimizing the total amount of consumed network power/energy,
etc.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 47 of 180

It is worth mentioning that the PathComp is designed to compute the path and resources for requests
carrying either a single network connectivity service or multiple services. The latter is interesting when
trying to restore diverse services affected by a network anomaly (e.g., link failure) or reoptimising the
allocated resources (e.g., to reduce the overall network consumed power). For each service, the
output of the PathComp for a successful computation describes: i) the set of devices and links forming
the path; ii) specific switching/technology configuration parameters (e.g., the label in L2, optical
frequency in L0, etc.). If the PathComp does not find a feasible path / resources to accommodate a
service fulfilling the requirements, a response informing about that is sent by the PathComp.

3.4.1. New Features/Extensions

For the design and implementation of the PathComp the following characteristics have been
considered:

• The aim is to concentrate in a specialized component any path computation and resource
selection functions encompassing single or multiple domains, heterogeneous technologies
forming the underlying infrastructure, etc.

• The PathComp operates as a server that can host a diverse pool of algorithms targeting several
objective functions such as K-Shortest Path, Shortest Path, Energy-Aware Routing, etc.

• The PathComp exposes a defined interface and workflow to the rest of TeraFlow OS
Components to compute paths and select the network resources. In this regard, the main
component interacting with the PathComp is the Service but others may also use it when
required. However, depending on the necessities, the Automation, Slice, or Inter-Domain
Components could leverage the PathComp functionalities.

3.4.2. Final Design

The architecture of the PathComp is depicted in Figure 23, which is formed by two main elements: the
Front-End and the Back-End Path Computations.

Figure 23: Architecture of the PathComp component.

gRPC

Front-End
PathComp

REST API

Alg. #1

PathComp

Back-End
PathComp

Alg. #2

Alg. #N

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 48 of 180

• The Front-End PathComp handles the interactions with other TeraFlow OS components (e.g.,
Service, Automation, Slice, or Inter-Domain) to receive and process (new or update)
connectivity service requests using the defined gRPC API (described below). Additionally, the
Front-End PathComp can also trigger interactions with other components (e.g., Context or
Monitoring) to retrieve information required or interesting to conduct the path computation
and resource selection functions. The Front-End then performs the mapping between the
gRPC messages to local commands based on a defined REST API (with JSON encoding). By
doing so, the Front-End PathComp requests the actual computing execution to the Back-End
module.

• The Back-End PathComp hosts the pool of devised Algorithms (as shown in Figure 23) to be
executed. Thus, upon request (from the Front-End) a specific algorithm is triggered whose
output is the returned.

The separation between the Front-End and Back-End modules is done to isolate both
operations/functions: i) the interactions between the PathComp with TeraFlow SDN controller
Components; and ii) the actual path computation and resource selection process which may result in
an intensive computational process. By doing so, a 1: N Front-End / Back-Ends relationship could be
built aiming at fostering the scalability and dynamism of the overall PathComp solution.

3.4.3. iFinal Interfaces

The PathComp component has two interfaces: i) an external one based on gRPC to interact with other
TeraFlow OS components such as Service, Context, Automation, Slice, or Inter-Domain; ii) an internal
one based on a REST API.

• gRPC Interface

The gRPC interface is offered to the rest of TeraFlow OS components for the sake of requesting
and responding path computations and resource selections to the PathComp. Moreover, the
PathComp leverages a method supported by the Context component to retrieve the information
related to the topology, devices, links, etc. In Table 14, it is shown the specific rpc method
supported by the PathComp where in brief, the set of services and a targeted algorithm are
required to trigger the computations in the PathComp entity.

Table 14: gRPC PathComp interfaces

RPC Method Name Parameters Results
PathCompRequest Services, Algorithm Service
GetContext ContextId Context

• REST Interface

As mentioned above, the Front-End and Back-End modules of the PathComp component use a
REST API to request/respond to the explicit path computations carried out in the Back-End
module. The encoding is JSON-based. Three methods are supported over this interface as shown
in Table 15. The GET method allows the Front-End querying/monitoring about the status of the
Back-End entity, i.e., for “health” matters. More importantly, the POST and PUT methods enable
the Front-End to request the computations for either a single or diverse network connectivity
services. To this end, recall that it is passed the Context information along with the targeted

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 49 of 180

algorithm identifier, and the individual service features (i.e., endpoints, constraints to be met,
etc.). If the Back-End module succeeds in computing the paths for the requested services, the
resulting devices, links, network resources are formatted in the response to be eventually
configured/programmed by the TeraFlow OS. Note that the difference between using the POST or
PUT messages is that in the first, the Back-End processes new incoming network connectivity
services (i.e., not deployed), whilst in the PUT method, the Back end handles the re-computation
of existing service, e.g., for re-optimization purposes. Thus, it is expected that in the PUT method
additional information is provided about the currently occupied resources by the services to be
re-computed by the Back-End module.

Table 15: REST API for the Front-End – Back-End modules of the PathComp

Method Endpoint URL Results
POST /pathComp/api/v1/compRoute Computed path

and network
resources

PUT /pathComp/api/v1/compRoute Computed path
and network
resources

GET /pathComp/api/v1/health OK with the
status of the
Back end
PathComp
element

3.4.4. Final Operational Workflows

Figure 24 depicts the workflow for requesting the path computation and resource selection for a new
connectivity service. The request (PathCompRequest) is sent by the Service component specifying the
list of services with their characteristics such as endpoints, bandwidth and latency needs, etc. In this
request, it is also specified the targeted algorithm to be executed. Otherwise, the PathComp triggers
a default algorithm. The PathComp then retrieves the context information which used as input
information to seek a feasible path and resources. Within the PathComp, for each demanded service,
the selected algorithm is executed iteratively. To this end, a local copy of the context information is
always updated before triggering computation for the following service. Finally, the resulting path
computation and selected resources are notified to the Service component via the PathCompReply
message

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 50 of 180

Figure 24: Workflow between Service and PathComp Components to request/respond to a new incoming network
connectivity request

3.4.5. Evaluation

The evaluation of the PathComp component is tackled from both perspectives: functional addressing
details of the control interface and protocol data, and from a more numerical view where it is shown
the CDF of the PathComp delay when serving a set of dynamic network services and slices.

Functional Validation

In this part, it is described, and contents request message received from the Back-End element to
trigger the route computation and resource selection for a specific set of network connectivity
services. Figure 25, it is shown the contents of the REST API-based request (POST method) sent by the
Front-End and processed by the Back end. The contents are divided into three blocks:

• Service request: specifies service attributes and computation needs such as the “pre-selected”
algorithm (e.g., K Shortest Paths – KSP) to be triggered along with other arguments (e.g.,
maximum K value), the service identifier, the service endpoints (i.e., device and link
identifiers), and the demanded requirements / constraints to be fulfilled (e.g., the bandwidth
and the maximum end-to-end latency);

• Device List: contains the set of devices forming the transport infrastructure. For each device,
it is described attributes such as the context and topology identifiers, the type (e.g., router),
the endpoints (to connect to either other devices or terminating devices), and other
characteristics like the consumed power upon idle state (needed for energy-aware routing);

• Link List: contains the set of links interconnecting the devices. For each link, it is described the
endpoints being connected along with required attributes (e.g., delay, cost, available
bandwidth, etc.).

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 51 of 180

Figure 25: REST API Front-End / Back-End PathComp Request Content.

After triggering the selected algorithm at the Back end PathComp, if a path computation succeeds,
this is sent back to the Front-End element to eventually proceed with the allocation through
interacting with other TeraFlow SDN controllers (i.e., Service). The REST API-based response
constructed by the Back-End element is depicted in Figure 26. The contents are:

• Service information: contains the service identifier and endpoints to allow the Front-End
entity to resolve the path computation request and response exchange;

• Path attributes: carries specific output information such as the total end-to-end available
capacity through the computed path, the accumulated end-to-end latency, and the
aggregated total cost or consumed power once the service is eventually set up;

19/12/2022

Service request

Device List

Link List

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 52 of 180

• Link List: it is listed the set the ordered set of the links forming the connectivity service
between the two endpoints. In other words, it is contained the link information (context,
topology and identifier) needed to allow the resource allocation when passed to the Service
Component.

Figure 26: REST API Front-End / Back-End PathComp Response Content.

Numerical Results

The considered metric for assessing the PathComp component is the delay incurred by both the Front-
End and Back-End elements when processing and serving computations requests. The elapsed time
takes into consideration the above workflow: i) the Front-End retrieves the Context information, ii)
the Front-End composes the REST API request message to the Back-End element; iii) the Front-End
sends the request and wait till receive a response from the Back end PathComp; iv) the Front-End
processes the response; v) the Front-End sends the response to the Service component.

To produce the CDF of the PathComp delay, 100 requests are generated where uniformly queries L2
and L3 network services and slices. The endpoints of every request are chosen randomly from the

7

Service request

Path attributes

Selected Link List

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 53 of 180

transport topology shown in Figure 27. The infrastructure is formed by 7 packet switches/routers
which are controlled/programmed by a TeraFlow SDN controller instance. It is worth mentioning that
the data plane is emulated and only the controller building blocks are considered to collect the
numerical results

Figure 27: Transport Network Topology for PathComp Delay Performance Evaluation.

Each PathComp request is generated with a Poisson statistical model whose inter-arrival time is set to
200ms while the duration of the service/slice is modelled exponentially with a holding time of 10s.
The considered algorithm to be executed regardless of the request type (connectivity service or slice)
is the shortest path (i.e., Dijkstra algorithm). Finally, we consider that 5 replicas of the PathComp pod
(e.g., Front-End and Back-End containers) are deployed behind a Kubernetes service for load balancing
purposes.

In Figure 28, it is shown the CDF of the PathComp latency for the generated 100 requests. We observe
that the delay ranges between 15 and 85 ms approximately.

Figure 28: CDF for the PathComp Delay.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 54 of 180

4. Hardware and L0/L3 Multi-layer Integration
This section provides the design overview, interfaces, operational workflows, and evaluation results
of the core TeraFlowSDN components of T3.2, i.e., the SBI component (see Section 4.1), the Service
component (see Section 4.2), and the Forecaster component (see Section 4.3).

4.1. SBI Component

This section describes the SBI component in charge of interacting with the underlying network
equipment. Different protocols and data models might be needed to manage the network equipment;
for this reason, the SBI component provides a Driver API that enables developers to implement new
drivers and integrate them into TeraFlowSDN. We describe the SBI component’s architectural design,
the plugins’ framework, the Driver interface, as well as the interface it exposes to the rest of the
TeraFlowSDN components, while providing some performance evaluation results of the different
southbound drivers.

4.1.1. New Features/Extensions

• Automated device discovery through interaction with the Automation component.
• Complete implementation of device monitoring functions.
• Improve OpenConfig driver templates.
• Validate and improve TAPI driver.
• Full support for P4 device configuration through a P4 driver implementation.
• Add new device driver managing for XR constellations via Infinera Pluggable Manager (IPM)

controller.

4.1.2. Final Design

The available driver plugins are listed below, with a link to the corresponding subsection:

• An emulated driver plugin for testing purposes (see Section 4.1.3.1);
• An OLS ONF Transport API [TR547] driver plugin (see Section 4.1.3.2);
• An ONF TR-532 microwave driver plugin (see Section 4.1.3.3);
• A NETCONF [24] /OpenConfig [25] driver plugin for packet routers (see Section 4.1.3.4);
• A P4 [10] driver plugin for next-generation white box switches (see Section 4.1.3.5); and
• XR Constellation driver plugin (see Section 4.1.3.6).

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 55 of 180

Figure 29: Architecture of the Device component

4.1.3. Device Plugins

Depending on the device to be managed, the TeraFlowSDN SBI component loads and uses the
respective device plugin to translate abstract device operations into device-specific operations. The
implemented drivers follow the Driver API described in Section 4.1.4. In the rest of this section, a
variety of device plugins are presented.

4.1.3.1. Emulated Device Driver Plugin
Introduction

This section describes the Emulated Device Driver Plugin. This driver is used only for testing purposes
to avoid strict dependencies on actual (physical or virtual) devices connected to the Device component
for testing.

Supported Function

The function of this driver is very simple; it operates like a normal driver but, instead of interacting
with physical/virtual devices, it uses internal memory for storing the configuration values provided.
The driver implements all the methods described in the Device Driver API (see Section 4.1.4):

Device Driver RPC Released on Description
Constructor v1 Constructor of an Emulated Device Driver. Provides a setting

named as “endpoints” to define the endpoints that will be
exposed by the emulated device.

Connect v1 No real connection is established as the emulated driver does
not need to connect to any external device. Disconnect v1

GetInitialConfig v1 Does nothing since the emulated device driver is constructed
from scratch at each TeraFlow deployment.

GetConfig v1 Retrieves specific configuration blocks according to the
filtering parameters specified for the method.

SetConfig v1 Updates/Deletes configuration blocks with the configuration
rules specified in the method parameters. DeleteConfig v1

SubscribeState v1 Activates the monitoring of specific resources previously
configured.

gRPC

Device
Servicer

SBI Driver API

IETF N
etw

ork
Topology

Em
ulated

O
penConfig

Transport API

P4

O
N

F TR-352

XR DRIVER

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 56 of 180

UnsubscribeState v1 Deactivates the monitoring of specific resources previously
configured.

GetState v1 Periodically retrieves synthetic randomly generated values
according to the configured sampling durations and intervals.

Table 16: List of RPCs supported by the Emulated TeraFlowSDN device driver

4.1.3.2. OLS ONF Transport API Driver Plugin
Introduction

This subsection describes the implementation of the Transport API (TAPI) Device Driver that serves as
an SBI for the TeraFlow OS inside the Device component. As depicted in Figure 30, we consider the
use of the TAPI Driver to interact with an Open Line System (OLS) Controllers in charge of managing
underlying optical transport networks. In that way, the entire optical domain managed by the OLS
controller is exposed to the TeraFlow OS as a single component with endpoints corresponding to the
border endpoints in the optical network.

Figure 30: Architecture of the Device component’s Transport API Driver

Supported Function

The goal of the TAPI Device Driver is to provide the function needed to establish basic communication
with an OLS controller that will, in turn, manage the optical nodes. The interface to be implemented
for TAPI-ready nodes is detailed in OpenAPI Specification (OAS) YAML files available in Table 17. In
particular, the REST API URIs supported for the basic functionality of TAPI are described below:

• GET /restconf/data/tapi-common:context
This URI provides the client with the TAPI context of the server, i.e., the topology, connectivity
services, Service Interface Points (SIPs), as well as information about the name of the context
and its Universal Unique Identifier (UUID). This URI is used to retrieve information about the
TAPI server and to check effective connectivity with it.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 57 of 180

• GET /restconf/data/tapi-common:context/tapi-connectivity:connectivity-
context/connectivity-service
This URI retrieves the connectivity services present in the TAPI server as well as the underlying
connections that support them.

• DELETE /restconf/data/tapi-common:context/tapi-connectivity:connectivity-
context/connectivity-service={uuid}
This URI enables deletion of the connectivity service associated with a certain UUID.

• POST /restconf/config/context/connectivity-service/{uuid}
This URI provides an endpoint for the creation of connectivity services. The data embedded in
the body of the POST request is formatted as a JSON message. The JSON snippet in Figure 31
shows an example of creating a unidirectional 50 GHz connectivity service between two
optical network endpoints.

Table 17: List of RPCs supported by the OLS ONF TAPI TeraFlowSDN device driver.

Device Driver RPC Released on Description
Constructor v1 Constructor of a Transport API Device Driver.
Connect v1 Validates connectivity with configured TAPI-enabled OLS

controller.
Disconnect v1 Does nothing since it uses basic non-persistent HTTP

connections.
GetInitialConfig v1 Does nothing since list of Service Interconnection Points (SIPs)

is requested on-demand through GetConfig.
GetConfig v1 Retrieves specific configuration blocks according to the

filtering parameters specified for the method.
SetConfig v1 Updates/Deletes connectivity services according to

parameters specified in the method parameters. DeleteConfig v1
SubscribeState v1 Not Implemented.
UnsubscribeState v1
GetState v1

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 58 of 180

Figure 31: Example TAPI Create Connectivity Service.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 59 of 180

4.1.3.3. ONF TR-532 / IETF Network Topology Microwave Driver Plugin

Figure 32: Microwave driver plugin design

IETF Network Topology and ONF TR-532 Device Driver are used to manage microwave devices involved
in L3VPN services. The API interacts with an intermediate controller, the entity that interfaces with
the specific MW network element.

The implementation follows the guidelines described in the Black Box abstraction in ETSI GS mWT 024.
Each Microwave domain is abstracted and presented to Teraflow OS as a single virtual device exposing
only edge ports.

Each MW domain is referred to with a single specific NodeId, while the exposed edge ports are
referred as a concatenation of the device Id internal to the abstracted MW domain and the specific
portId of that MW device

Table 18: List of the supported functions of the MW Device Drivers

Device Driver RPC Description
Connect()
GET: /nmswebs/restconf/data/ietf-
network:networks

Check the Intermediate Controller connectivity status for
the involved MW domain

GetConfig()
GET: /nmswebs/restconf/data/ietf-
network:networks/network={:s}?fields={:s}

GET: nmswebs/restconf/data/ietf-eth-
tran-service:etht-svc

Retrieve topological information about available edge
ports
Parameters used to invoke service are

network= ‘ETH-TOPOLOGY’
fields= ‘ietf-network-topology:link(link-
id;destination(dest-node;dest-
tp);source(source-node;source-
 tp));node(node-id;ietf-network-
topology:termination-point(tp-id;ietf-te-
topology:te/name)'

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 60 of 180

The parameters returned by API are a list of
{resource_key, resource_value} where

resource_key =
/endpoints/endpoint[node_id:tp_id]
resource_value = {'uuid': tp_id, 'type': te['ietf-
te-topology:te']['name']}

retrieve list of services already configured in MW domain

The parameters returned by API are a list of
{resource_key, resource_value} where

resource_key =
/services/service[(service_name)]
 resource_value = {'uuid': service_name, 'type':
service['etht-svc-type']}

SetConfig()
POST: /nmswebs/restconf/data/ietf-eth-
tran-service:etht-svc

create service identified by UUID involving
Parameters used to invoke service are

data = {
 'etht-svc-instances': [
 {
 'etht-svc-name': uuid,
 'etht-svc-type': 'ietf-eth-tran-
types:p2p-svc',
 'etht-svc-end-points': [
 {
 'etht-svc-access-points': [
 {'access-node-id': node_id_src,
'access-ltp-id': tp_id_src, 'access-point-id': '1'}
],
 'outer-tag': {'vlan-value': vlan_id,
'tag-type': 'ietf-eth-tran-types:classify-c-vlan'},
 'etht-svc-end-point-name':
'node_id_src:tp_id_src',
 'service-classification-type': 'ietf-
eth-tran-types:vlan-classification'
 },
 {
 'etht-svc-access-points': [
 {'access-node-id': node_id_dst,
'access-ltp-id': tp_id_dst, 'access-point-id': '2'}
],
 'outer-tag': {'vlan-value': vlan_id,
'tag-type': 'ietf-eth-tran-types:classify-c-vlan'},
 'etht-svc-end-point-name':
'node_id_dst:tp_id_dst',
 'service-classification-type': 'ietf-
eth-tran-types:vlan-classification'
 }
]
 }
]
 }

DeleteConfig()
DELETE: /nmswebs/restconf/data/ietf-eth-
tran-service:etht-svc/etht-svc-
instances={:s}

Delete service
Parameters used to invoke service are

data = {
 'etht-svc-instances': [{
 'etht-svc-name': uuid, }]
 }

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 61 of 180

4.1.3.4. OpenConfig Driver Plugin
This subsection describes the implementation of the OpenConfig Device Driver that serves as an SBI
for the TeraFlow OS inside the Device component. As shown in Figure 33, we use the OpenConfig
Driver to interact with L2 packet switches and L3 packet routers directly. Besides, two protocols are
considered for the OpenConfig Driver, the NetConf protocol, used for configuring the devices, and the
gNMI protocol, mainly used for telemetry streaming from these devices.

Figure 33: Architecture of the Device component’s OpenConfig Driver.

4.1.3.5. NETCONF Protocol
The NETCONF protocol offers primitives to view and manipulate data, providing a suitable encoding
as defined by the data model. Data is arranged into one or multiple configuration datastores (a set of
configuration information required to get a device from its initial default state into a desired
operational state). It enables remote access to a device and provides the rules by which multiple
clients may access and modify a datastore within a NETCONF server (e.g., device). Note that NETCONF-
enabled devices include a NETCONF server, while management applications include a NETCONF client.

The client and server communication data usually consists of XML/JSON-encoded RPC messages over
a secure (commonly Secure Shell, SSH) connection. However, device Command Line Interfaces (CLIs)
can be also wrapped around a NETCONF client.

NETCONF operations are organized in layers as shown in Figure 34. Upper Content Layer models the
configuration and/or notification data that is exchanged between a client and a server. Operations
Layer (e.g. <get-config>, <edit-config>) provides mechanisms for retrieving and manipulating that
data. In the figure below, the RPC Layer enables to issue remote procedure calls for supporting the
operations and issuing specialized commands not backed by data, e.g., device reboot. Finally, the
bottom Transport Protocol Layer offers the means for exchanging the RPC messages in a secure
manner.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 62 of 180

Figure 34: NETCONF Layering.

After establishing a session over a secure transport, both the client and the server send a hello
message to announce their protocol capabilities, the supported data models, and the server’s session
identifier. After that announcement, the NETCONF session is up and ready for operation. The list of
RPCs defined by the NETCONF protocol is summarized in Table 19. When accessing configuration or
state data, with NETCONF operations, subtree filter expressions can select subtrees.

Table 19: List of RPCs supported by the NETCONF protocol.

RPC Description
<get> Retrieve running configuration and device state information.
<get-config> Retrieve all or part of a specified configuration datastore.
<edit-config> Edit a configuration datastore by creating, deleting, merging or replacing content.
<copy-config> Copy an entire configuration datastore to another configuration datastore.
<delete-config> Delete a configuration datastore.
<lock> Lock an entire configuration datastore of a device.
<unlock> Release a configuration datastore lock previously obtained with the <lock>

operation.
<close-session> Request graceful termination of a NETCONF session.

The Yet Another Next Generation (YANG) is a data modeling language, initially conceived to model
configuration and state data for network devices. Models define the device configurations &
notifications, capture semantic details, and make them more understandable. YANG is widely adopted
as data modelling language across frameworks and Open-Source projects. In addition, there is a
notable ongoing effort across the Standards Developing Organizations (SDOs) to model constructs
(e.g., topologies, protocols), including packet and optical devices. There are, literally, hundreds of
emerging standards across SDOs.

A YANG model includes a header, imports and include statements, type definitions, configurations,
and operational data declarations as well as actions (RPC) and notifications. The language is expressive
enough to:

• Structure data into data trees within the so-called datastores, by means of encapsulation of
containers and lists, and to define constrained data types (e.g., following a given textual
pattern).

• Condition the presence of specific data to the support of optional features.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 63 of 180

• Allow the refinement of models by extending and constraining existing models (by
inheritance/augmentation), resulting in a hierarchy of models.

• Define configuration and/or state data.

YANG has become the data modeling language of choice for multiple network control and
management aspects due partly to its features, flexibility and the availability of tools. It is used to
model the internal data and management operations of individual devices, entire networks, and
services. Even pre-existing protocols (e.g., routing protocols such as BGP) can be configured in through
YANG messages.

4.1.3.6. Data models and XML Templates
The XML templates of the following data templates can be found in Annex XML templates. The
tables used in the following sections refer to the variables used in the templates, indicating the
model path and the name used in the OpenConfig driver.

• L2VPN

The following scenario lists the required steps to configure an L2-VPN in ADVA Edgecore DRX-30
stacked node:

• Create L2-VPN network-instance
o <edit-config> - Create L2-VPN network-instance

Variable Name / Model Path Description
ni_node_vpn_name
/network-instances/network-
instance/name

A unique name identifying the network instance.

ni_vpn_description
/network-instances/network-
instance/config/description

A free-form string to be used by the network operator to describe
the function of this network instance.

ni_node_vpn_type
/network-instances/network-
instance/config/type

The type of network instance. The value of this leaf indicates the
type of forwarding entries that should be supported by this network
instance. Signalling protocols also use the network instance type to
infer the type of service they advertise.
Options: DEFAULT_INSTANCE (Global Table), L3VRF, L2VSI, L2P2P,
L2L3.

• Configure interfaces/subinterfaces L2 parameters
a. <edit-config> - Configure interfaces/subinterfaces L2 parameters (vlan-id)

Variable Name / Model Path Description
ni_network_access_interface_id
/interfaces/interface/name

Identifier for the physical interface. This means the name of
the physical interface: i.e: GigabitEthernet0/0/0 or eth-0/0/0
depending on each vendor notation.

ni_network_access_termination _point
/interfaces/interface/name

Specifies the name of the subinterface.

ni_network_access_mtu
/interfaces/interface/config/mtu

Set the max transmission unit size in octets for the physical
interface. If this is not set, the mtu is set to the operational
default -- e.g., 1514 bytes on an Ethernet interface.

ni_network_access_description
/interfaces/interface/subinterfaces/su
bint
erface/config/description

A textual description of the subinterface.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 64 of 180

ni_network_access_vlan_id
/interfaces/interface/subinterfaces/su
bint
erface/oc-vlan:vlan/ocvlan:match/oc-
vlan:single-tagged/oc-vlan:config/oc-
vlan:vlan-id

VLAN identifier for single-tagged packets. Used for 802.1q
ethernet frames.

• Add interfaces (endpoint) to L2-VPN network instance
o <edit-config> - Add interfaces (endpoint) to L2-VPN network instance

Variable Name / Model Path Description
ni_node_vpn_name
/network-instances/network-
instance/name

A unique name identifying the network instance.

ni_network_access_interface_id
/network-instances/network-
instance/interfaces/interface/id

Identifier for the physical interface. This means the name of
the physical interface: i.e: GigabitEthernet0/0/0 or eth-0/0/0
depending on each vendor notation.

ni_network_access_termination _point
/network-instances/network-
instance/interfaces/interface/id

Specifies the name of the subinterface.

• Add virtual circuits (point-to-point, bi-directional pseudo-wire interconnection) to an L2-VPN
network instance

• <edit-config> - Add virtual circuits (point-to-point, bi-directional pseudo-wire
interconnection) to L2-VPN network instance

Variable Name / Model Path Description
ni_node_vpn_name
/network-instances/network-instance/name

A unique name identifying the network instance.

ni_node_connection_point
/network-instances/network-instance/connection-
points/connection-point/connection-point-id

A pointer to the configured identifier for the
Endpoint.

ni_node_connection_point_id
/network-instances/network-instance/connection-
points/connection-point/endpoints/endpoint/rem
ote/config/virtual-circuit-identifier

The virtual-circuit identifier that identifies the
connection at the remote end-point.

ni_node_remote_system
/network-instances/network-instance/connection-
points/connection-point/endpoints/endpoint/rem
ote/config/remote-system

The IP address of the device which hosts the
remote end-point.

• L3VPN

The following scenario lists the required steps to configure an L3-VPN in ADVA Edgecore DRX-30
stacked node:

• Create L3-VPN network-instance
o <edit-config> - Create L3-VPN network-instance

Variable Name / Model Path Description
ni_node_vpn_name
/network-instances/network-
instance/name

A unique name identifying the network instance.

ni_node_vpn_type
/network-instances/network-
instance/config/type

The type of network instance. The value of this leaf indicates the type
of forwarding entries that this network instance should support.
Signalling protocols also use the network instance type to infer the
type of service they advertise.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 65 of 180

Options: DEFAULT_INSTANCE (Global Table), L3VRF, L2VSI, L2P2P,
L2L3.

ni_vpn_description
/network-instances/network-
instance/config/description

A free-form string to be used by the network operator to describe the
function of this network instance.

ni_node_router_id
/network-instances/network-
instance/config/router-id

Router id of the router - an unsigned 32-bit integer expressed in
dotted quad notation.

ni_node_route_distinguisher
/network-instances/network-
instance/config/route-
distinguisher

The route distinguisher that should be used for the local VRF or VSI
instance when it is signalled via BGP.

• Define routing protocols used within the sL3-VPN network instance
o <edit-config> - Define BGP routing protocol for network-instance
o <edit-config> - Define DIRECTLY CONNECTED routing protocol for network-instance

Variable Name / Model Path Description
ni_node_vpn_name
/network-instances/network-instance/name

A unique name identifying the network instance.

ni_node_policy_type
/network-instances/network-
instance/protocols/protocol/identifier

The on-the-wire encapsulation that should be
used when sending traffic from this network
instance.

ni_node_protocol_name
/network-instances/network-
instance/protocols/protocol/name

The label allocation mode to be used for L3
entries in the network instance Options:
PER_PREFIX, PER_NEXTHOP, INSTANCE_LABEL.

ni_node_bgp_local_autonomous_system
/network-instances/network-
instance/protocols/protocol/bgp/global/config/as

The local autonomous system number that is to
be used when establishing sessions with the
remote peer or peer group, if this differs from the
global BGP router autonomous system number.

ni_routing_protocol_bgp_router_id
/network-instances/network-
instance/protocols/protocol/bgp/global/config/router-
id

Router id of the router - an unsigned 32-bit
integer expressed in dotted quad notation.

• Configure interfaces/subinterfaces L3 parameters
o <edit-config> - Configure interfaces/subinterfaces L3 parameters (IP address, address

prefix, vlan id and MTU)

Variable Name / Model Path Description
ni_network_access_interface_id
/interfaces/interface/name

Identifier for the physical interface. This means the name
of the physical interface: i.e: GigabitEthernet0/0/0 or
eth-0/0/0 depending on each vendor notation.

ni_network_access_termination _point
/interfaces/interface/name

Specifies the name of the subinterface.

ni_network_access_mtu
/interfaces/interface/config/mtu

Set the max transmission unit size in octets for the
physical interface. If this is not set, the mtu is set to the
operational default -- e.g., 1514 bytes on an Ethernet
interface.

ni_network_access_description
/interfaces/interface/subinterfaces/subint
erface/config/description

A textual description of the subinterface.

ni_network_access_vlan_id
/interfaces/interface/subinterfaces/subint
erface/oc-vlan:vlan/oc-vlan:match/oc-

VLAN identifier for single-tagged packets. Used for
802.1q ethernet frames.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 66 of 180

vlan:single-tagged/oc-vlan:config/oc-
vlan:vlan-id
ni_network_access_address_ip
/interfaces/interface/subinterfaces/subint
erface/oc-ip:ipv4/oc-ip:addresses/oc-
ip:address/oc-ip:ip

The IPv4 address on the subinterface.

ni_network_access_prefix
/interfaces/interface/subinterfaces/subint
erface/oc-ip:ipv4/oc-ip:addresses/oc-
ip:address/oc-ip:config/oc-ip:prefix-length

The length of the subnet prefix.

• Add interfaces (endpoint) to L3-VPN network instance
o <edit-config> - Add interfaces (endpoint) to an L3-VPN network instance

Variable Name / Model Path Description
ni_node_vpn_name
/network-instances/network-
instance/name

A unique name identifying the network instance.

ni_network_access_interface_id
/network-instances/network-
instance/interfaces/interface/id

Identifier for the physical interface. This means the name of
the physical interface: i.e: GigabitEthernet0/0/0 or eth-0/0/0
depending on each vendor notation.

ni_network_access_termination _point
/network-instances/network-
instance/interfaces/interface/id

Specifies the name of the subinterface.

• Create BGP Routing Policies Import/Export for an L3-VPN
o <edit-config> create a routing-policy

Variable Name / Model Path Description
rp_match_ext_community_set_name
/routing-policy/defined-sets/bgp-defined-sets/ext-
community-sets/ext-community-set/
ext-community-set-name

Label of the extended community set. This is
used to reference the set in match conditions.

rp_match_ext_community_member
/routing-policy/defined-sets/bgp-defined-sets/ext-
community-sets/ext-community-set/config/
ext-community-member

Members of the extended community set.

o <editc-config> create BGP match conditions and action

Variable Name / Model Path Description
rp_set_name
/routing-policy/policy-definitions/policy-
definition/name

Name of the top-level policy definition. This name is used in
references to the current policy. It should be invoked by the
ni_node_import_policy or ni_node_export_policy based on
the policy type.

rp_set_statement_name
/routing-policy/policy-definitions/policy-
definition/statements/statement/name

Statement Name

rp_match_ext_community_set_name
routing-policy/policy-definitions/policy-
definition/statements/statement/conditi
ons/oc-bgp-pol:bgp-conditions/oc-bgp-
pol:config/oc-bgp-pol:ext-community-set

Label of the extended community set. This is used to
reference the set in match conditions.

rp_action_policy_result Select the final disposition for the route, either accept or
reject.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 67 of 180

/routing-policy/policy-definitions/policy-
definition/statements/statement/actions
/config/policy-result

Options: ACCEPT_ROUTE, REJECT_ROUTE

• Apply BGP Import/export Policy (Route Target) to an L3-VPN network instance
o <edit-config> Apply BGP policy to network-instance

Variable Name / Model Path Description
ni_node_vpn_name
/network-instances/network-instance/name

A unique name identifying the network instance.

ni_node_import_policy
/network-instances/network-instance/inter-
instance-policies/apply-policy/config/import-
policy

List of policy names in sequence to be applied on
receiving a routing update in the current context.

ni_node_export_policy
/network-instances/network-instance/inter-
instance-policies/apply-policy/config/export-
policy

List of policy names in sequence to be applied on
receiving a routing update in the current context.

• Create protocol redistribution policies within an L3-VPN network instance
o <edit-config> Creating protocol redistribution DIRECTLY_CONNECTED to BGP

Variable Name / Model Path Description
ni_node_vpn_name
/network-instances/network-instance/name

A unique name identifying the network instance.

ni_routing_protocol_src
/network-instances/network-instance/table-
connections/table-connection/src-protocol

The name of the protocol associated with the table
which should be used as the source of forwarding or
routing information.

ni_routing_protocol_dst
/network-instances/network-instance/table-
connections/table-connection/dst-protocol

The table to which routing entries should be exported.

ni_routing_protocol_af
/network-instances/network-instance/table-
connections/table-connection/address-family

The address family associated with the connection.

• ACL

The following scenario lists the required steps to configure an ACL in ADVA Edgecore DRX-30 stacked
node:

• Create ACL-SET
a. <edit-config> - Create ACL-SET (name, type, ACE ID, actions, parameters for the

chosen type)

Variable Name / Model Path Description
acl_name
/acl/acl-sets/acl-set/name

Service Identifier

acl_type
/acl/acl-sets/acl-set/type

The type of the service. The value of this leaf indicates
the type of the rules that should be supported by this
ACL
Options: L2, IPV4, IPV6.

acl_id
/acl/acl-sets/acl-set/acl-entries/acl-entry/se
quence-id

ACL-ENTRY Identifier

acl_match_source_mac
/acl/acl-sets/acl-set/acl-entries/acl-entry/l2/

For Type L2. Source address to match.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 68 of 180

config/source-mac
acl_match_destination_mac
/acl/acl-sets/acl-set/acl-entries/acl-entry/l2/
config/destination-mac

For Type L2. Destination address to match.

acl_match_source_ipv4
/acl/acl-sets/acl-set/acl-entries/acl-entry/ipv
4/config/source-address

For Type IPV4. Source address to match.

acl_match_destination_ipv4
/acl/acl-sets/acl-set/acl-entries/acl-entry/ipv
4/config/destination-address

For Type IPV4. Destination address to match.

acl_match_source_ipv6
/acl/acl-sets/acl-set/acl-entries/acl-entry/ipv
6/config/source-address

For Type IPV6. Source address to match.

acl_match_destination_ipv6
/acl/acl-sets/acl-set/acl-entries/acl-entry/ipv
6/config/destination-address

For Type IPV6. Destination address to match.

acl_match_protocol
/acl/acl-sets/acl-set/acl-entries/acl-entry/ipv
{4 or 6}/config/protocol

For Type IPV4 and IPV6. The protocol carried in the IP
packet.

acl_match_dscp
/acl/acl-sets/acl-set/acl-entries/acl-entry/ipv
{4 or 6}/config/dscp

For Type IPV4 and IPV6. Value of diffserv codepoint.

acl_match_hop_limit
/acl/acl-sets/acl-set/acl-entries/acl-entry/ipv
{4 or 6}/config/hop-limit

For Type IPV4 and IPV6. The IP packet's hop limit.

acl_match_source_port
/acl/acl-sets/acl-set/acl-entries/acl-entry/tra
nsport/config/source-port

For type IPV4. Source port or range.

acl_match_destination_port
/acl/acl-sets/acl-set/acl-entries/acl-entry/tra
nsport/config/destination-port

For type IPV4. Destination port or range.

acl_match_tcp_flags
/acl/acl-sets/acl-set/acl-entries/acl-entry/tra
nsport/config/tcp-flags

For type IPV4. List of TCP flags to match.

acl_match_forwarding_action
/acl/acl-sets/acl-set/acl-entries/acl-entry/act
ions/config/forwarding-action

Specifies the forwarding action. One forwarding
action must be specified for each ACL entry
Options: ACCEPT, REJECT, DROP.

acl_match_log_action
/acl/acl-sets/acl-set/acl-entries/acl-entry/act
ions/config/log-action

Specifies the log action and destination for matched
packets. The default is not to log the packet.
Options: NONE, SYSLOG.

• Add ACL-ENTRY to ACL-SET
a. <edit-config> - Add ACL-ENTRY to ACL-SET (name, type, ACE ID, actions, parameters

for the chosen type) (Same configuration as Create ACL-SET)
• Associate the ACL to an interface
• <edit-config> - Associate the ACL to an interface (interface ID, interface, sub interface, ACL

name, ACL type, type of traffic)

Variable Name / Model Path Description
acl_interface_id
 /acl/interfaces/interface/id

Interface identifier

acl_interface_name
/acl/interfaces/interface/interface-ref/config/interface

Interface name

acl_interface_subinterface Subinterface name

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 69 of 180

/acl/interfaces/interface/interface-ref/config/subinterface
acl_interface_acl_set_name
/acl/interfaces/interface/ingress-acl-sets/{ingress or egress}-acl-
set/set-name

Name of the ACL to associate.

acl_interface_acl_set_type
/acl/interfaces/interface/ingress-acl-sets/{ingress or egress}-acl-
set/type

Type of the ACL to associate.

• Inventory

In this section, a "get" query is used to obtain information on all the device's components. This
information is processed based on the component to display just the relevant information. The
following table displays information that has been filtered based on the type of component.

Component
type

Data

Chassis • Component name
• Component type
• Vendor name
• SW version

CPU 1. Component name
2. Component type

Fan 1. Component name
2. Component type

Power
supply

1. Component name
2. Component type

Port 1. Port Name
2. Component type

Transceiver A component of type=TRANSCEIVER is expected to be a subcomponent of a PORT component.
A transceiver will always contain physical-channel(s), however when a line side optical-
channel is present the physical-channel will reference its optical-channel. In this case, the
optical-channels components must be subcomponents of the transceiver. The relationship
between the physical-channel and the optical-channel allows for multiple optical-channels to
be associated with a transceiver in addition to ensuring certain leaves are not duplicated in
multiple components.

1. Operational state data for each component
2. Operational state data for port transceiver
3. Operational state data for channels

4.1.3.7. gNMI
Introduction

gNMI (gRPC Network Management Interface) is a network management protocol that uses gRPC
(Google Remote Procedure Calls) as the underlying transport mechanism. It is a modern, open-source,
and scalable protocol designed to be used for network configuration, monitoring, and management.

gNMI is based on the concept of a simple, high-level API that allows network devices to be managed
in a uniform and consistent way. It uses a data model-based approach, where the data model defines
the schema for the configuration and state data of the managed device. This allows gNMI to be used
with various network devices, regardless of their specific vendor or model.

gNMI provides support for several important features, including:

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 70 of 180

• Transport security: gNMI uses TLS (Transport Layer Security) to communicate securely
between the client and the server;

• Bi-directional streaming: gNMI allows the client and server to communicate in both directions
simultaneously, allowing for real-time updates of network data;

• Versioning: gNMI supports versioning of the data model and the gNMI protocol itself, allowing
for backwards compatibility and easy updates;

• Multi-tenancy: gNMI allows multiple clients to access the same network device, enabling
support for multi-tenant environments.

Overall, gNMI is a powerful and flexible tool for managing modern networks and is gaining widespread
adoption in the networking industry.

Figure 35: gNMI architecture driver plugin.

Supported Functions

This driver interrogates network devices to collect telemetry data and dumps it into the monitoring
component. This is the list of RPCs supported by the gNMI Driver:

Device Driver RPC Released on Description
Connect v1 Establishes a connection with a specific gNMI device by

interrogating it and asking for the capabilities; it also starts
the monitoring thread.

Disconnect v1 Terminates the monitoring thread, disconnects the gRPC
channel, sends the unsubscribe message to the device in
question and stops the thread.

SubscribeState v1 Checks the subscriptions queue and starts the telemetry
streaming for a given device using a certain path. Then, it
dumps the samples into the out_samples queue.

UnsubscribeState v1 Puts the unsubscription request in the subscriptions queue.
GetConfig v1 Provides the list of endpoints.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 71 of 180

GetInitialConfig v1
Not Implemented.

SetConfig v1
DeleteConfig v1

Table 20: gNMI supported GRPCs

4.1.3.8. P4 Whitebox Switches Driver Plugin
Introduction

Network devices are typically designed “bottom-up”, with fixed-function chips (i.e., with no run-time
reconfigurability) being the heart of the system, thus determining how the device OS is realized and
what functionality it can offer. Unfortunately, adding a new feature set to a fixed-function switch is a
complex process that takes several months or even years as it requires hardware redesign.

The OpenFlow protocol [9] made a step forward by introducing an open interface to populate the
forwarding tables (i.e., hash tables for Ethernet address lookup, longest-prefix match tables for
IPv4/IPv6 and wildcard lookups for ACLs) in network switches, thus enabling software-based control
planes to control switches from a variety of different vendors. However, OpenFlow still assumes the
switches have a fixed behaviour (i.e., a fixed set of tables), typically described in the datasheet of a
switch ASIC. This means that OpenFlow cannot change the switch behaviour, e.g., by adding new
protocols.

P4 [10] was introduced in 2014 with the purpose of addressing the limitations of the OpenFlow SDN
protocol as well as legacy networking paradigms. P4 is an open source, domain-specific programming
language for next-generation network devices, also known as whiteboxes, which focuses on describing
a “top-down” forwarding plane of programmable (non-fixed-function) switches. With programmable
switches, there is no need for fixed protocols, such as OpenFlow. Instead, P4 treats programmable
switches just like general purpose processors (e.g., CPUs or GPUs), allowing them to execute code
written in a specific programming language (i.e., the P4 language). The code is first compiled by a P4
compiler and then loaded into the processor of the whitebox switch. This way, P4 lets network
developers define what headers a switch should be able to parse (including custom or new headers),
how to match on each header, and what actions the switch may perform on each header. In P4,
OpenFlow is just another program, i.e., one of many possible ways to describe what a forwarding
plane does.

Stratum OS

Since the introduction of P4 in 2014, a large community has been established, initially around the
P4.org consortium, and since 2019 under the ONF umbrella [11]. In the same year (i.e., 2019), ONF
announced the release of the Stratum [12] project as an open-source silicon-independent switch OS
for SDN that runs on a variety of switching silicon and whitebox switch platforms. In addition, stratum
exposes a set of next-generation SDN interfaces, including P4Runtime, OpenConfig, gRPC, gNMI, and
gNOI, enabling greater programmability of forwarding behaviours in interchangeable forwarding
devices, thus avoiding the vendor lock-in of today’s data planes through proprietary silicon interfaces
and closed software APIs.

Native P4 support in TeraFlowSDN

The ONF has implemented several P4 device drivers on top of the Stratum OS (i.e., Barefoot, Mellanox,
BMv2) with P4Runtime support within the ONOS SDN controller [13] ecosystem. The early

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 72 of 180

TeraFlowSDN P4 device driver prototype, introduced in D3.1 and the first TeraFlowSDN release (v1),
assumed an intermediate SDN controller (i.e., ONOS) between the TeraFlowSDN controller and P4
devices, to exploit the existing P4Runtime implementation by ONOS.

However, during the second TeraFlowSDN release (v2), the TeraFlowSDN P4 device driver was re-
designed with native P4 support. A new P4Runtime client has been natively incorporated in the
TeraFlowSDN device driver and an overlay P4 Manager module abstracts low-level client interactions
with the switch to offer key abstractions for the following P4 entities:

• Tables and table entries;
• Actions;
• Action profile members and groups;
• Meters and meter entries;
• Direct meters and direct meter entries;
• Counters and counter entries;
• Direct counters and direct counter entries;
• Controller packet metadata and packet replication entries

In the P4 data plane, TeraFlowSDN still embraces ONF initiatives by integrating P4 devices empowered
by the Stratum OS. On the control plane side, TeraFlowSDN provides native support for P4
management operations through a built-in P4Runtime client; thus, no dependencies with external
SDN controllers (i.e., ONOS) are required anymore. In the rest of this section, we describe how the
TeraFlow SDN controller manages P4 whiteboxes. Figure 16 shows a high-level overview of the P4
TeraFlowSDN device driver plugin and how it interacts with P4 devices through P4Runtime and
Stratum.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 73 of 180

Figure 36: Architecture of the Device component’s P4 driver plugin.

The TeraFlowSDN P4 pipeline

Before deploying a P4 program onto a P4 device, a pre-deployment workflow must be realized, as
shown in Figure 36 above.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 74 of 180

Figure 37: Required steps for a P4 SDN controller to install a P4 program on a P4 device.

Specifically, the desired P4 program needs to be written (step 1) by a network developer and compiled
(step 2) by a P4 compiler. The P4 compiler generates two outputs:

• A “P4 Info” file (step 3a) which describes the “schema” of the P4 pipeline for runtime control.
This schema captures P4 program attributes such as tables, actions, parameters, etc, in a
target-independent format (I.e., same P4Info for a software switch, ASIC, etc.);

• A target-specific “P4 bin” binary (step 3b) used to realize a switch pipeline, such as a binary
configuration for an application-specific integrated circuit (ASIC), a bitstream for a field-
programmable gate array (FPGA), etc. At runtime the TeraFlowSDN controller uses a gRPC-
based P4Runtime interface to manage the match-action pipelines specified in the P4 program.

P4 TeraFlowSDN Device Driver RPCs

The complete list of RPCs supported by the P4 TeraFlowSDN device driver is depicted in Table 21
below. Only two basic RPCs were released in the first TeraFlowSDN release (v1). Release v2 introduces
support for configuring all the basic P4 entities through Set/Get/DeleteConfig RPCs and the
GetInitialConfig RPC.

Table 21: List of RPCs supported by the P4 TeraFlowSDN device driver.

Device Driver RPC Released on Description
Connect v1 Initiates a connection with a given P4 device on a given IP. The

Connect RPC also offers custom settings which allow to pass

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 75 of 180

the P4 binary file and the P4 info file to be installed on a given
P4 device to realize a target forwarding logic.

Disconnect v1 Tears a connection to a P4 device down.
GetConfig v2 Retrieves either the entire device configuration or part of it,

based on an input list of resource keys to be looked up.
GetInitialConfig v2 Retrieves a basic initial configuration for a P4 device to allow

automated onboarding of P4 devices through the
Automation component.

SetConfig v2 Installs a set of entries to the table(s) of the P4 pipeline,
based on an input map of resource keys to resource values.

DeleteConfig v2 Removes a set of entries from the table(s) of the P4 pipeline
based on an input list of resource keys to be removed.

Future Work

The TeraFlowSDN device driver API also allows monitoring device resources (e.g., KPIs) through the
SubscribeState, GetState, and UnsubscribeState RPCs. To achieve this functionality in P4, a dedicated
working group by ONF, titled the P4.org Application group [15], suggests detailed P4 device resource
monitoring via an in-band network telemetry (INT) specification [16]. We leave the implementation of
such a feature in TeraFlowSDN as future work, as it falls outside of the scope of the TeraFlow EU
project. However, UBI commits to this activity and hopes to engage the ETSI TFS community soon.

4.1.3.9. XR Constellation Driver Plugin
The functional driver presents XR constellation network point-to-multipoint connections as ports for
configuring optical bandwidth and service endpoints. XR constellations are discovered from Infinera
Intelligent Pluggable Manager (IPM) via north-bound REST-API. Optical bandwidth is delivered as an
attribute to the XR Constellation driver and passed via REST-API to IPM.

Figure 38. TeraFlowSDN device drivers

Infinera XR point-to-multipoint solution is the evolution of traditional point-to-point optical solution,
reducing the required number of optical transceivers for connections and simplifying hub location
with a simple optical combiner/demultiplexer. Point-to-multipoint hub and leaf XR modules create an

gRPC

Device
Servicer

SBI Driver API

IETF N
etw

ork
Topology

O
penConfig

Transport API

P4

O
N

F TR-532

XR DRIVER

Em
ulated

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 76 of 180

XR constellation, where the hub side XR module works controller for leaf XR modules enabling co-
existence and coordinating optical behavior.

Figure 39. Infinera XR Optics point-to-multipoint concept

On point-to-multipoint configuration, XR pluggables are dual-managed, traditional pluggable basic
configuration modes are done via standard CMIS/MSA interface via host NOS and service
configuration (for example, L3/L3 services) via host NOS and Network Element Controller. XR modules
point-to-multipoint optical network configuration is managed via IPM, where each individual XR
modules connects via IP/CoAP protocol to IPM. To realize this IP communication link between IPM
and XR module, network element may include XR Communication Agent SW component or alternative
configure additional IP service for XR modules using dedicated VLAN connecting to local XR module.
XR hub and leaf modules has an internal embedded bi-directional communication channel over optical
path, allowing the leaf to share hub side IP connectivity towards IPM. Generally, IP access point can
be on any or all hub and leaf modules. IPM has a north bound REST API available for external
controllers, which the TeraFlowSDN XR Constellation driver connects to.

Figure 40. XR constellation management solution

TRADITIONAL POINT-TO-POINT OPTICAL SOLUTIONS XR OPTICS-ENABLED POINT-TO-MULTIPOINT SOLUTION

COHERENT EDGEACCESSCOHERENT EDGE HUB

Numerous Low-Speed
Traditional Transceivers

ACCESS HUB

Single High-Speed
XR TransceiverIntermediate

Aggregation

Simple Optical
Combiner

N + 1
TRANSCEIVERS
N = # of end-points

(N+1) x 2
TRANSCEIVERS
N = # of end-points

Router

North Bound
Interface Models

L2/L3 Transport

IPM - Intelligent
Pluggable
Manager

XR Module (Hub)

Back Office OSS
with TeraFlowSDN

CMIS/I2C,
CFP2 MSA/MDIO

XR Module(Leaf)

DataPath (SerDes)
VLAN

Embedded comm channels

Server / Cloud-based Server / Cloud-based

Network
Element

Controller

XR Communication
Agent

L3

Server / Cloud-based

Management IP networking

REST API

Dr
iv

er
s

gRPC

Device
Servicer

SBI Driver API

IETF N
etw

ork
Topology

Em
ulated

O
penConfig

Transport API

P4

O
N

F TR-532

XR DRIVER

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 77 of 180

Introduction

XR Constellation driver uses Infinera Intelligent Pluggable Manager (IPM) REST API to control XR
pluggables. XR constellation driver behavior and functionality are developed, tested and
demonstrated on two different environments: 1) emulated XR modules on XR Network emulator with
IPM and SONiC device for 4x100G breakout constellation emulation and 2) with IPM and 400G SONiC
device hosting XR pluggables on point-to-multipoint topology with traffic generator/analyzer in 400G
VTI mode. XR transceiver 400G VTI mode allows Nx25 optical bandwidth allocation to VLAN for hub-
leaf connection.

Introduction XR Network emulator environment for 4x100G breakout topology

Infinera developes XR network emulator environment, emulated XR pluggables software in hub-leaf
roles with IP communication features/enhancements to support 1) both XR Communication Agent
(XR-CA) use cases and DHCPv4/ND/DHCPv6/NTP (non XR-CA use case) and 2) XR modules hub-leaf
internal network emulation and related functionality. XR network emulator setup is modelled to mimic
4x100G breakout network topology using 4x1G physical ports between SONiC L3 device and x86
server. When XR-CA is integrated to host router device, the XR modules IP address management is
greatly simplified as XR modules uses host router IP addresses instead of dynamic IP address allocation
via DHCPv4/ND/DHCPv6/NTP. With XR Network emulator, XR pluggable emulators and SONiC device
usage, transition to real 400G SONiC and real XR pluggables is straightforward. XR pluggable emulators
are used to develop IP functionalities and SW component/protocol stack extensions to support XR IP
layer functionalities, as for example extensions to DHCP client modifications, ND extensions and other
IP and internal communication channel selection and control logic. XR network emulation provides
also virtualized leaf hosts, presenting connectivity through SONiC 1G ports to leaf devices.

On this environment, SONiC development focus on porting and integrating XR-CA SW component and
verifying/hardening SONiC features to support both XR-CA and non-XRCA use case, and
testing/verifying/hardening SONiC features.

IPM component is installed and maintained on x86 dedicated server, with additional services
(DHCPv4/DHCPv6/NTP) supporting also non-XRCA use scenarios.

Figure 41. TeraFowSDN and XR Network emulator environment

IPM DHCPv4
NTP

Linux vHost#1
container

gRPC

Device
Servicer

SBI Driver API

IETF N
etw

ork
Topology

Em
ulated

O
penConfig

Transport API

P4

O
N

F TR-532

SONiC L3 device

XR pluggable

XR DRIVER

HUB site

Leaf site
XR Network emulator on x86 server

1G/RJ45

x86 server
Linux vHost#2

container

Linux vHost#3
container

Linux vHost#4
container

XR pluggable

XR pluggable

XR pluggable

XR pluggable

XR network single constellation emulator with 4x100G breakout mode (1 HUB module, 4
leafs) via 4x1G ports on SONiC device. Emulated XR pluggables and setup supports testing
with XR-CA and without (DHCPv4/NTP + SONIC DHCP relay).

Emulated optical and
data connection

XR module CoAP
session to IPM

IPM-XR CoAP session per
XR pluggable module

IPv4/IPv6 SW NAPT
Service with ARP, ND
for vlan.4090

vlan4090

ethX

ethX

ethX

ethX

XR pluggalbes emulated on
individual containers.
XR leafs communicate via
emulated embedded
communication channel.
XR emulators support XR-CA
and DHCPv4/ND/NTP (non XR-
CA) use case.

REST

XR
Communi-

cationAgent
(XR-CA) 192.100.4.1/24 192.100.4.2/24

192.100.3.2/24

192.100.2.2/24

192.100.1.2/24

192.100.3.1/24

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 78 of 180

Introduction for XR transceivers 400G VTI-mode topology environment

Infinera develops the XR constellation driver to support XR VTI mode Nx25G bandwidth allocation
and verifies its interoperability with IPM. XR VTI mode optical transport port is presented as
{device}/{port}.{vlan}. Other components used in the environment include 400G SONiC device
(Edgecore DSC240) hosting XR pluggables and XR-CA, 400G XR transceivers, optical
splitter/decoupler and an external traffic generator/analyzer.

Infinera integrates and ports XR-CA SW component for SONiC/DCS240 with management interface
support, enhances SONiC CMIS support and CLI commands for XR pluggable and verifies/hardens
requires SONiC features with XR-CA and non XR-CA use case with DHCPv4/ND/NTP. Environment is
used verify XR pluggables on different operation modes and optical parameters with SONiC. The
environment is multipurposed, allowing for example XR module 4x100G breakout mode verification
as well. Different XR pluggable firmware versions are verified on environment, providing feedback
on XR transceivers interoperability on open SONiC Environment.

Figure 42 TeraFlowSDN and XR constellation 400G/VTI-mode environment

IPM REST interface

The attached embedded file contains the IPM REST interface description in the json file format
(version v0.6.71). As new functionality is added to IPM, REST API and the json description will evolve
accordingly. The current version is available at: https://labs.etsi.org/rep/tfs/controller/-
/blob/develop/src/device/service/drivers/xr/ipm_rest_api_0_6_71.json

Table 22. XR Constellation driver RPCs

Device Driver RPC Released on Description
Connect v2 Initiates a connection to IPM at the specified address and

acquires access token using provided username and
password parameters. Stores provide constellation hub
module name parameter to scope driver instance
constellation.

Disconnect v2 Tears down connection to IPM.
GetConfig v2 Optains topology and interfaces of the XR constellation.

VLANs carrying Nx25G traffic on 400G ports between hub-and-leaf.
TeraFlowSDN controls XR constellation VTI mode optical bandwidth (VLAN optical bandwidth) on 400G port.
In VTI mode optical bandwidth is managed at Nx25G granularity for each VLAN.
Setup allows both XR-CA and DHCPv4/NTP (non XR-CA) use cases.

gRPC

Device
Servicer

SBI Driver API

IETF N
etw

ork
Topology

Em
ulated

O
penConfig

Transport API

P4

O
N

F TR-532

XR DRIVER
XR Hub site router

XR Leaf site router

XR-CA

400G/VTI-mode

x86 server

XR pluggable

XR pluggable

XR pluggable
vlan1
vlan2

IPv4/IPv6
SW NAPT
Service with
ARP, ND

Optical
splitter/decoupler

Traffic generator/analyser

Traffic to/from vlan1/2

400G/VTI-mode

400G/VTI-mode

vlan2

vlan1

XR-CA

XR CoAP sessions to HUB module

100G100G

Traffic to/from vlan1/2

100G

100G

IPM DHCPv4
NTP

Edgecore DCS240/SONiC

REST

Edgecore DCS240/SONiC

https://labs.etsi.org/rep/tfs/controller/-/blob/develop/src/device/service/drivers/xr/ipm_rest_api_0_6_71.json
https://labs.etsi.org/rep/tfs/controller/-/blob/develop/src/device/service/drivers/xr/ipm_rest_api_0_6_71.json

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 79 of 180

GetInitialConfig v2 Currently not needed, implemented as no-op.
SetConfig v2 Creates or update bandwidth and connectivity of XR

constellation to match provided parameters.
DeleteConfig v2 Updated bandwith and connectivity of the XR constellation

to reflected deleted services.

4.1.4. Final Interfaces

SBI is the TeraFlowSDN component in charge of interacting with the underlying network equipment
or external/hierarchical controllers. Different protocols and data models might be needed to manage
the network equipment or external controllers; for this reason, the Device component provides a
Driver API that enables developers to implement new drivers and integrate them into the
TeraFlowSDN.

Generic device driver Functions

• Initialization of the Driver provides a setting named as “endpoints” to define the endpoints
that will be exposed by the device or external controller;

• Connect and Disconnect connects and disconnects to device or external controller;
• GetInitialConfig and GetConfig retrieve an initial configuration and the current configuration

set for the device. GetConfig supports filtering of the resources according to the parameters
specified for the method;

• SetConfig and DeleteConfig update and delete the configured resources for the driver;
• SubscribeState and UnsubscribeState activate and deactivate the monitoring of specific

resources previously configured;
• GetState periodically retrieves state of device and provide information towards TeraFlowSDN.

4.1.5. Final Operational Workflows

The operational workflow for the Device component is depicted in Figure 43. The workflow has been
generalized to cover all the Device Driver types. Besides, the workflow assumes a request from the
Service component while not mandatory.

The workflow starts when some component, e.g., the Service component, triggers a device
configuration, for instance, due to the processing of an UpdateService request. When the Device
component receives the ConfigureDevice request, it first interrogates the Context component to
gather the most up-to-date known state of the device stored on the Context component. Based on
that information, it decides the appropriate Driver to be used. Next, it instantiates the selected Driver
and, for each configuration rule to modified in the device, it first interrogates the device to get the
most up-to-date state related to that configuration rule. Then, it correlates the state of the Context
component with that of the device and decides the between updating or deleting the rules, if needed,
or just keeping the rules as they are in the device. When all the requested configuration rules are
processed, it updates the Context component with the most up-to-date device and configuration
status according to the changes made. Finally, it returns the control to the caller service.

It is worth noting that, even when this workflow is general, it is complete enough to cover all the cases
supported by the different Drivers. However, even when all Drivers implement the same API, the
interactions between the Drivers and the devices are particular to each protocol, device and driver

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 80 of 180

used. Besides, this workflow focuses on the details related to the Device component; for those details
related to other components, such as the Service component, check section 4.2.4.

Figure 43: Exemplary workflow of a generic device configuration

4.1.6. Evaluation

In this section, we evaluate the functionality and performance of the different device drivers
supported by the TeraFlow controller. Each of them is described in terms of the experimental setup
used for the evaluation, and the evaluation results, which might include functional and performance
results.

4.1.6.1. Emulated Device Driver Plugin
Experimental setup

The setup is deployed on a server equipped with a 24-core AMD Ryzen Threadripper 3960X processor
clocked at 2.2 GHz, with 32 GB of DDR4 RAM, and 4TB HDD storage. On this server, TeraFlowSDN is
deployed on top of MicroK8s v1.24.8 and no resource limits are set in order to allow stress testing.

The microservices deployed for the benchmark include: i) 1 replica of the Slice component; ii) 5
replicas of the Service component; iii) 5 replicas of the PathComp pod (e.g., Front-End and Back-End
containers); iv) 1 replica of the Device component; and v) 1 replica of the Compute component. All
pods are deployed behind a Kubernetes service for load balancing purposes (when applicable).

The transport network topology used for this assessment is that shown in Figure 27 and used for the
PathComp performance evaluation. The topology is formed by 7 packet switches/routers which are
controlled/programmed by a TeraFlow SDN controller instance. It is worth mentioning that the data

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 81 of 180

plane is emulated, and only the controller building blocks are considered to collect the numerical
results.

Numerical Results

The considered metric for assessing the Emulated Driver is the delay incurred by the driver in
retrieving/storing/deleting the requested configuration rules in an internal memory. The elapsed time
only takes into consideration the driver’s internal processing time. To produce the CDF of the
Emulated Driver delay, 100 requests are generated uniformly, selecting between L2 and L3 network
services and slices. The endpoints of every request are chosen randomly from the transport topology.
Each request is generated with a Poisson statistical model whose inter-arrival time is set to 200ms
while the duration of the service/slice is modelled exponentially with a holding time of 10s.

In Figure 44, it is shown the CDF of the Emulated Device Driver latency for the generated 100 requests.
It is worth noting that each request implies several rule configurations, retrievals and deletions. We
observe that 80% of the requests changing the configuration take less than 1 ms. Besides, retrieval of
the configuration takes longer due to having to explore the whole configuration rule memory kept by
the emulated driver.

Figure 44: CDF for the Emulated Device Driver Delay.

We repeated the experiment two additional times only, including L2 services (Figure 45) and L3
services (Figure 46) in an isolated manner. We observe that L2 configuration rules take longer than
the L3 counterpart. The reason is that L3 services generally include almost twice the number of
configuration rules required for L2 due to the additional packet routing rules.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 82 of 180

Figure 45: CDF for the Emulated Device Driver Delay (only L2 services).

Figure 46: CDF for the Emulated Device Driver Delay (only L3 services).

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 83 of 180

4.1.6.2. OLS ONF Transport API Driver Plugin
Experimental setup

We used the same setup (server and micro-service deployment) described for the Emulated Device
Driver (see section 4.1.6.1) extended with a proprietary Open Line System controller exposing a
Transport API NBI and controlling an emulated underlying optical data plane formed by 4 nodes with
10 service interconnection points each of them.

Numerical Results

The considered metric for assessing the Transport API Driver is the delay incurred by the driver in
retrieving/storing/deleting the configuration rules from/to the OLS controller, plus the dispatching
time of these requests within the OLS controller. To produce the CDF of the Transport API Driver delay,
100 requests are generated. The endpoints of every request are chosen randomly from the abstract
node extrapolated from the OLS controller where these endpoints are mapped to the SIPs of the TAPI
context. Each request is generated with a Poisson statistical model whose inter-arrival time is set to
200ms while the duration of the requests is modelled exponentially with a holding time of 10s.

In Figure 47, it is shown the CDF of the Transport API Device Driver latency for the generated 100
requests. We observe that most configuration/deconfiguration requests take around 10 ms, while
configuration retrieval requests take around 100 ms.

Figure 47: CDF for the Transport API Device Driver Delay.

4.1.6.3. ONF TR-532 Microwave Driver Plugin
Experimental setup

We used the same setup (server and micro-service deployment) described for the Emulated Device
Driver (see section 4.1.6.1) extended with a proprietary SIAE MW intermediate controller exposing
both IETF Network and ONF TR-532 models and controlling an underlying physical data plane formed

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 84 of 180

by 2 nodes connected by a MW radio link traversed by an L2 services interconnecting 2 edge
endpoints. The MW transport network topology used for this assessment is that shown in Figure 48.

Figure 48: MW Transport Network Topology.

Functional Evaluation

We first evaluated the driver from a functional point of view. For that, we configured a single service
named “mw-service” and checked that the configuration landed on the MicroWave controller and
configured the devices. The specifications of the service are provided in Table 23.

Table 23. MicroWave Test Service Specifications

Service UUID Service Type Src EndPoint Dst EndPoint VLAN Id
mw-service L2NM 192.168.27.139:10 192.168.27.140:8 123

Figure 49 depicts the resulting service in the MicroWave controller after receiving and configuring the
request. Besides, Figure 50 and Figure 51 show the configuration offloaded by the MW controller into
the microwave devices 192.168.27.139 and 192.168.27.140. In the figures, ports Gi0/6 correspond to
the antennas, while ports Gi0/10 (LAN2) of 192.168.27.139 and Gi0/8 (LAN4) of 192.168.27.140
correspond to the LAN ports connected to packet devices.

Figure 49: Test “mw-service” on the MW controller configured by TeraFlow controller.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 85 of 180

Figure 50: Test service “mw-service” configured on device 192.168.27.139.

Figure 51: Test service “mw-service” configured on device 192.168.27.140.

Finally, Figure 52 illustrates the Wireshark capture of the communication; note that communication is
encrypted for security reasons, thus only encrypted messages are shown.

Figure 52: WireShark capture of communication between TeraFlow controller and MW controller.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 86 of 180

Numerical Results

The considered metric for assessing the MW Device Driver is the delay incurred by the driver in
retrieving/creating/deleting the L2 services between 2 edge endpoints of the MW domain, plus the
time spent by the MW controller in configuring the underlying devices.

To produce the CDF of the MW Device Driver delay, 100 requests are generated. The endpoints of
every request are chosen randomly from the LAN ports exposed by the abstract node extrapolated
from the MW controller. Each request is generated with a Poisson statistical model whose inter-arrival
time is set to 200ms while the duration of the requests is modelled exponentially with a holding time
of 10s.

In Figure 53, it is shown the CDF of the MicroWave Device Driver latency for the generated 100
requests. We observe that most retrieve/configuration requests take around 1s, while
deconfiguration requests take 5 seconds or more.

Figure 53: CDF for the MicroWave Device Driver Delay.

4.1.6.4. OpenConfig Driver Plugin
Experimental setup

To conduct the experiments of the OpenConfig device driver, we used a Virtual Machine running on
top of OpenStack with an 8 virtual-core CPU (Intel Xeon Skylake IBRS Processor clocked at 2GHz) and
16 GB of DDR4 RAM. On this VM, TeraFlowSDN is deployed within MicroK8s v1.24.8.

The microservices deployed for the benchmark include: i) 1 replica of the Slice component; ii) 1
replicas of the Service component; iii) 1 replicas of the PathComp pod (e.g., Front-End and Back-End

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 87 of 180

containers); iv) 1 replica of the Device component; and v) 1 replica of the Compute component. All
pods are deployed behind a Kubernetes service for load balancing purposes (when applicable).

The transport network topology used for this assessment is that shown in Figure 54. The topology is
formed by 2 x Edgecore DRX-30 packet routers each running ADVA software NOS-OPX-B-21.1.1(8769)
which are controlled/programmed by a TeraFlow SDN controller instance. Each router has 26 usable
endpoints + 1 endpoint used for the link between the routers.

Figure 54: Topology used to assess the OpenConfig Device Driver.

Functional evaluation

To assess the capacity of TeraFlowSDN to configure the packet routers using OpenConfig, we triggered
the creation of a number of services and retrieved the internal configuration of the packet routers
where the services were configured. Figure 55 depicts the list of services in TeraFlowSDN WebUI while
Table 24 contains the relevant segments of the resulting configuration deployed on the routers. Note
that the interface connecting the routers among them is “eth-1/0/25.55”.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 88 of 180

Figure 55: List of Services configured by TeraFlowSDN using OpenConfig Driver.

Table 24. Configuration of Packet Routers done by TeraFlowSDN OpenConfig Driver

hostname R149
router-id 5.5.5.5
!
port eth-1/0/2
 lldp transmit
 lldp receive
 enable
port eth-1/0/12
 lldp transmit
 lldp receive
 enable
port eth-1/0/21
 lldp transmit
 lldp receive
 enable
port eth-1/0/25
 lldp transmit
 lldp receive
 flow-monitoring
 enable
port eth-1/0/26
 lldp transmit
 lldp receive

hostname R155
router-id 5.5.5.1
!
port eth-1/0/14
 lldp transmit
 lldp receive
 enable
port eth-1/0/19
 lldp transmit
 lldp receive
 enable
port eth-1/0/24
 lldp transmit
 lldp receive
 enable
port eth-1/0/25
 lldp transmit
 lldp receive
 flow-monitoring
 enable
port eth-1/0/27
 lldp transmit
 lldp receive

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 89 of 180

 enable
!
interface inet eth-1/0/25.55
 ip address 99.5.55.2/24
 outer-tags 55
 ip ospf
 ip ospf network point-to-point
 ldp
 enable
interface ac eth-1/0/12.104
 outer-tags 104
 enable
interface ac eth-1/0/26.103
 outer-tags 103
 enable
!
router l3vpn
!
e-lan ELAN-AC:103 103
 vc VC-1 peer 5.5.5.1
 ac eth-1/0/26.103
 enable
e-lan ELAN-AC:104 104
 vc VC-1 peer 5.5.5.1
 ac eth-1/0/12.104
 enable
!
vrf svc_2-NetInst 2
 interface inet eth-1/0/2.102
 mtu 3000
 ip address 10.1.1.149/16
 outer-tags 102
 enable
 router bgp
 local-as 65002
 redistribute connected
 l3vpn route-distinguisher 65002:102
vrf svc_7-NetInst 7
 interface inet eth-1/0/21.107
 mtu 3000
 ip address 10.10.0.149/16
 outer-tags 107
 enable
 router bgp
 local-as 65007
 redistribute connected
 l3vpn route-distinguisher 65007:107

 enable
!
interface inet eth-1/0/25.55
 ip address 99.5.55.1/24
 outer-tags 55
 ip ospf
 ip ospf network point-to-point
 ldp
 enable
interface ac eth-1/0/14.104
 outer-tags 104
 enable
interface ac eth-1/0/19.103
 outer-tags 103
 enable
!
router l3vpn
!
e-lan ELAN-AC:103 103
 vc VC-1 peer 5.5.5.5
 ac eth-1/0/19.103
 enable
e-lan ELAN-AC:104 104
 vc VC-1 peer 5.5.5.5
 ac eth-1/0/14.104
 enable
!
vrf svc_2-NetInst 2
 interface inet eth-1/0/24.102
 mtu 3000
 ip address 10.1.1.155/16
 outer-tags 102
 enable
 router bgp
 local-as 65002
 redistribute connected
 l3vpn route-distinguisher 65002:102
vrf svc_7-NetInst 7
 interface inet eth-1/0/27.107
 mtu 3000
 ip address 10.10.0.155/16
 outer-tags 107
 enable
 router bgp
 local-as 65007
 redistribute connected
 l3vpn route-distinguisher 65007:107

Numerical Results

The considered metric for assessing the OpenConfig Driver is the delay incurred by the driver in
retrieving/storing/deleting the configuration rules from/to the routers, including the time spent by
the routers to process the changes. To produce the CDF of the OpenConfig Driver delay, 100 requests
are generated. The endpoints of every request are chosen randomly from those ports available and
not used in the routers. Each request is generated with a Poisson statistical model whose inter-arrival
time is set to 1s while the duration of the requests is modelled exponentially with a holding time of
10s.

In Figure 56, it is shown the CDF of the OpenConfig Device Driver latency for the generated 100
requests. We observe that the majority of configuration/deconfiguration requests take 1 second or

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 90 of 180

more, while configuration retrieval requests take around 10s. It is worth noting that this delay is
almost 100% due to the processing time in the device. In particular, it can be seen that DeleteConfig,
in general, takes less time than SetConfig, and GetConfig is the operation consuming more time since
the entire data model needs to be traversed by the device NOS.

Figure 56: CDF for the OpenConfig Device Driver Delay.

4.1.6.5. P4 Whitebox Switches Driver Plugin
Experimental setup

This setup is deployed on a Dell PowerEdge R7515 chassis equipped with a 64-core AMD EPYC 7763
processor clocked at 2.45 GHz, with 256 GB of DDR4 RAM at 3200 MHz, and 2TB NVMe storage. The
AMD processor is also equipped with 2MB L1 data cache, 2MB L1 instruction cache, 32MB L2 cache,
and 256MB L3 cache. The L3 is shared among all 64 cores, while the rest are provisioned per-core.

TeraFlowSDN is deployed as a Kubernetes service on this server, and no resource limits are set to the
SBI and Context components to allow stress testing.

Benchmarking procedure

To benchmark the P4 SBI driver we use an emulated (Mininet) topology of one or more software based
P4 switches. We used the bmv2 P4 switch, which is already integrated into Mininet by ONF [14]. The
objective of the benchmark is twofold:

• Rule cardinality effects to quantify the latency:
o to install an exponentially increasing set of rules into a single P4 device.
o to retrieve an exponentially increasing set of rules from a single P4 device.
o to delete an exponentially increasing set of rules from a single P4 device.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 91 of 180

• Topology size effects to quantify the latency:
o to install a fixed configuration into a topology with increasing number of P4 devices.
o to retrieve the configuration from a topology with increasing number of P4 devices.
o to delete the configuration from a topology with increasing number of P4 devices.

P4 SBI driver performance vs. rule cardinality benchmark

The following benchmark measures the total execution time required by the P4 SBI driver to perform
rule installation/retrieval/deletion operations on a single P4 device using an exponentially increasing
number of rules in the ruleset. The length of the ruleset is 1, 10, 100, and 1000 rules respectively.

Rule installation: Figure 57 shows the total execution time (y axis) vs. time (x axis) during the execution
of SetConfig RPCs, each with 1, 10, 100, and 1000 P4 device rules respectively. The graph is annotated
with color-highlighted points, which indicate the time that each RPC was concluded:

i) The red point refers to the SetConfig RPC with 1 rule. This RPC is executed within 3.2
milliseconds.

ii) The green point refers to the SetConfig RPC with 10 rules. This RPC is executed within
16milliseconds.

iii) The blue point refers to the SetConfig RPC with 100 rules. This RPC is executed within 198
milliseconds.

iv) The white point refers to the SetConfig RPC with 1000 rules. This RPC is executed within 2.5
seconds.

Figure 57: Latency to install P4 device configuration (SetConfig RPC) with exponentially increasing number of rules
(1,10,100,1000).

Rule retrieval: Figure 58 shows the total execution time (y axis) vs. time (x axis) during the execution
of GetConfig RPCs, each with 1, 10, 100, and 1000 P4 device rules respectively. The graph is annotated
with color-highlighted points, which indicate the time that each RPC was concluded:

v) The red point refers to the GetConfig RPC with 1 rule. This RPC is executed within 12
milliseconds.

vi) The green point refers to the GetConfig RPC with 10 rules. This RPC is executed within 13
milliseconds.

vii) The blue point refers to the GetConfig RPC with 100 rules. This RPC is executed within 12
milliseconds.

viii) The white point refers to the GetConfig RPC with 1000 rules. This RPC is executed within 31.5
milliseconds.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 92 of 180

Figure 58: Latency to retrieve P4 device configuration (GetConfig RPC) with exponentially increasing number of rules
(1,10,100,1000).

Rule deletion: Figure 59 shows the total execution time (y axis) vs. time (x axis) during the execution
of DeleteConfig RPCs, each with 1, 10, 100, and 1000 P4 device rules respectively. The graph is
annotated with color-highlighted points, which indicate the time that each RPC was concluded:

ix) The red point refers to the DeleteConfig RPC with 1 rule. This RPC is executed within 2.5
milliseconds.

x) The green point refers to the DeleteConfig RPC with 10 rules. This RPC is executed within 24.5
milliseconds.

xi) The blue point refers to the DeleteConfig RPC with 100 rules. This RPC is executed within 166
milliseconds.

xii) The white point refers to the DeleteConfig RPC with 1000 rules. This RPC is executed within
1.7 seconds.

Figure 59: Latency to delete P4 device configuration with exponentially increasing number of rules (1,10,100,1000).

Discussion: To quantify how “heavy” each device driver RPC is, we fit functions on the values
highlighted by the points on Figure 57, Figure 58 and Figure 59 above. SetConfig and DeleteConfig
scale exponentially with an exponential increase in the number of rules as they both perform write
operations to the Context Database. This DB is currently under re-design so as to support faster I/O
and better scalability with increasing load; thus this performance is expected to improve throughout
the final integration activities in WP5. On the other hand, GetConfig scales almost linearly with an
exponential increase in the number of rules, which allows TeraFlow to retrieve device configuration
rather quickly, even when this configuration is large.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 93 of 180

P4 SBI driver performance vs. topology size benchmark

The following benchmark measures the total execution time the P4 SBI driver requires to perform rule
installation/retrieval/deletion operations on topologies with (a linearly) increasing size. The size of the
topology spans between 1-10 P4 devices. To quantify the impact of the topology size on the
performance of the P4 SBI driver, we keep the number of rules installed/retrieved/deleted constant
(1000 rules in total), thus the only variable in the benchmark is the topology size.

Rule installation: Figure 60 shows the total execution time (y axis) vs. time (x axis) during the execution
of SetConfig RPCs on a topology with increasing size. In each execution, the topology size increases by
one device. Specifically, the red point in Figure X indicates the total execution time to install 1000 rules
on a topology with a single P4 device, while the green point in Figure X indicates the total execution
time to install 1000 rules in total on a topology with 2 P4 devices (500 rules per device). Similarly, the
black point in Figure X indicates the total execution time to install 1000 rules in total on a topology
with 10 P4 devices (100 rules per device). The number of installed rules is kept constant (I.e., 1000
rules in total) to investigate how total execution time is affected by the topology size. The graph is
annotated with color-highlighted points, which indicate the time that each RPC was concluded:

xiii) The red point refers to 1x SetConfig RPC on 1x device. This RPC is executed within 125
milliseconds.

xiv) The green point refers to 2x SetConfig RPCs on 2x devices. These RPCs are executed within
265 milliseconds.

xv) The blue point refers to 3x SetConfig RPCs on 3x devices. These RPCs are executed within 402
milliseconds.

xvi) The magenta point refers to 4x SetConfig RPCs on 4x devices. These RPCs are executed within
553 milliseconds.

xvii) The cyan point refers to 5x SetConfig RPCs on 5x devices. These RPCs are executed
within 719 milliseconds.

xviii) The yellow point refers to 6x SetConfig RPCs on x devices. These RPCs are executed
within 903 milliseconds.

xix) The white point refers to 7x SetConfig RPCs on 7x devices. These RPCs are executed within
1080 milliseconds.

xx) The purple point refers to 8x SetConfig RPCs on 8x devices. These RPCs are executed within
1250 milliseconds.

xxi) The orange point refers to 9x SetConfig RPCs on 9x devices. These RPCs are executed within
1420 milliseconds.

xxii) The black point refers to 10x SetConfig RPCs on 10x devices. These RPCs are executed within
1590 milliseconds.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 94 of 180

Figure 60: Latency to install 1000 rules in total atop P4 topologies of increasing size.

Rule retrieval: Figure 61 shows the total execution time (y axis) vs. time (x axis) during the execution
of GetConfig RPCs on a topology with increasing size. In each execution, the topology size increases
by one device as in the case of Figure 60 above. The number of installed rules is kept constant (I.e.,
1000 rules in total) to investigate how total execution time is affected by the topology size. The graph
is annotated with color-highlighted points, which indicate the time that each RPC was concluded:

xxiii) The red point refers to 1x GetConfig RPC on 1x device. This RPC is executed within 2
milliseconds.

xxiv) The green point refers to 2x GetConfig RPCs on 2x devices. These RPCs are executed
within 4 milliseconds.

xxv) The blue point refers to 3x GetConfig RPCs on 3x devices. These RPCs are executed within 7
milliseconds.

xxvi) The magenta point refers to 4x GetConfig RPCs on 4x devices. These RPCs are executed
within 10 milliseconds.

xxvii) The cyan point refers to 5x GetConfig RPCs on 5x devices. These RPCs are executed
within 16 milliseconds.

xxviii) The yellow point refers to 6x GetConfig RPCs on x devices. These RPCs are executed
within 24 milliseconds.

xxix) The white point refers to 7x GetConfig RPCs on 7x devices. These RPCs are executed
within 32 milliseconds.

xxx) The purple point refers to 8x GetConfig RPCs on 8x devices. These RPCs are executed within
41 milliseconds.

xxxi) The orange point refers to 9x GetConfig RPCs on 9x devices. These RPCs are executed
within 51 milliseconds.

xxxii) The black point refers to 10x GetConfig RPCs on 10x devices. These RPCs are executed
within 63 milliseconds.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 95 of 180

Figure 61: Latency to retrieve 1000 rules in total atop P4 topologies of increasing size.

Rule deletion: Figure 62 shows the total execution time (y axis) vs. time (x axis) during the execution
of DeleteConfig RPCs on a topology with increasing size. In each execution, the topology size increases
by one device as in the case of Figure 61 above. The number of installed rules is kept constant (i.e.,
1000 rules in total) to investigate how total execution time is affected by the topology size. The graph
is annotated with color-highlighted points, which indicate the time that each RPC was concluded:

xxxiii) The red point refers to 1x DeleteConfig RPC on 1x device. This RPC is executed within
190 milliseconds.

xxxiv) The green point refers to 2x DeleteConfig RPCs on 2x devices. These RPCs are executed
within 304milliseconds.

xxxv) The blue point refers to 3x DeleteConfig RPCs on 3x devices. These RPCs are executed
within 482 milliseconds.

xxxvi) The magenta point refers to 4x DeleteConfig RPCs on 4x devices. These RPCs are
executed within 607 milliseconds.

xxxvii) The cyan point refers to 5x DeleteConfig RPCs on 5x devices. These RPCs are executed
within 766 milliseconds.

xxxviii) The yellow point refers to 6x DeleteConfig RPCs on x devices. These RPCs are executed
within 940 milliseconds.

xxxix) The white point refers to 7x DeleteConfig RPCs on 7x devices. These RPCs are executed
within 1130 milliseconds.

xl) The purple point refers to 8x DeleteConfig RPCs on 8x devices. These RPCs are executed
within 1280 milliseconds.

xli) The orange point refers to 9x DeleteConfig RPCs on 9x devices. These RPCs are executed
within 1440 milliseconds.

xlii) The black point refers to 10x DeleteConfig RPCs on 10x devices. These RPCs are executed
within 1600 milliseconds.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 96 of 180

Figure 62: Latency to delete 1000 rules in total atop P4 topologies of increasing size.

Discussion
Fitting an equation on the execution times reported for the SetConfig and DeleteConfig RPCs, we see
a linear behaviour. Specifically, the fitted function in each case is 𝐹𝐹SC = 164𝑥𝑥 − 78.4 for SetConfig
and 𝐹𝐹DC = 160𝑥𝑥 − 5.3 for DeleteConfig, which both indicate an increase of the total execution time
by 164 and 160 milliseconds per additional device, respectively. In the case of the GetConfig RPC, this
cost is much lower as only 6.8 milliseconds per additional device are incurred to the total execution
time.

4.1.6.6. XR Constellation Driver Plugin
Experimental setup

The setup uses two Dell PowerEdge R420 servers with 20 core Intel E5-2470@2.4GHz cpu, with
64GB@1333MHz memory and 1T SSD disks. One server runs TeraFlowSDN server and another Dell
server runs IPM with emulated XR module constellation. Servers are physically located same place
and sharing same subnet, having minimal latency between them.

Benchmarking procedure

IPM server has been configured HUB-LEAF reference configuration as show in Figure 63. Experimental
setup adds/deletes service between HUB1 and LEAF1 to provide performance result, measuring
TeraFlowSDN and IPM combined performance with GetConfig(), SetConfig(), DeleteConfig() methods.

Figure 63. IPM XR Constellation reference setup for TeraFlow XR driver evaluation

On the TeraFlowSDN side, we onboard an emulated router setup as overlay to host the pluggables on
TeraFlowSDN virtual routers. On Table 25 we detail an example request to create a service from
TeraFlowSDN XR Constellation Driver log, where endpoints are identified as “input_sip” and

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 97 of 180

“output_sip”. The service is requested to have the given UUID "32af83e7-042e-47a4-939f-
54e87fbc0906”.

Table 25. Example of IPM connection creation request

[2022-12-22 10:54:21,972] INFO:device.service.drivers.xr.XrDriver:SetConfig[XR HUB 1@172.19.219.44]: resources=[('/service[32af83e7-042e-47a4-939f-
54e87fbc0906]', '{"capacity_unit": "GHz", "capacity_value": 50.0, "direction": "UNIDIRECTIONAL", "input_sip": "XR HUB 1|XR-T4", "layer_protocol_name":
"PHOTONIC_MEDIA", "layer_protocol_qualifier": "tapi-photonic-media:PHOTONIC_LAYER_QUALIFIER_NMC", "output_sip": "XR LEAF 1|XR-T1", "uuid":
"32af83e7-042e-47a4-939f-54e87fbc0906"}')]

The response from IPM as seen from TeraFlowSDN XR Constellation Driver log is shown in Table 26
and contains the response accepting creating the connection request GET (8 ms), following with POST
responses when actual connection has been created (29ms). TeraFlowSDN connection name uses
“TF:<uuid>” syntax and IPM side connection identifier uses id: “/network-connection/<uuid>”. The
returned end-point identifiers are as given on SetConfig() request.

Table 26. Example of IPM connection creation response

[2022-12-22 10:54:21,993] INFO:device.service.drivers.xr.cm.cm_connection:process_http_response(): GET:
https://172.19.219.44:443/api/v1/ncs/network-connections qparams=[('content', 'expanded'), ('q', '{"state.name": "TF:32af83e7-042e-47a4-939f-
54e87fbc0906"}')] ==> 200

[2022-12-22 10:54:22,001] INFO:device.service.drivers.xr.cm.cm_connection:process_http_response(): POST:
https://172.19.219.44:443/api/v1/ncs/network-connections qparams=None ==> 202

[2022-12-22 10:54:22,001] INFO:device.service.drivers.xr.cm.cm_connection:Created connection name: TF:32af83e7-042e-47a4-939f-54e87fbc0906, id:
/network-connections/913fd8c1-f10d-453c-933d-fc58de19b97a, service-mode: XR-L1, end-points: [(XR HUB 1|XR-T4, 0), (XR LEAF 1|XR-T1, 0)]

[2022-12-22 10:54:22,001] INFO:device.service.drivers.xr.cm.tf:set_config_for_service: Created service 32af83e7-042e-47a4-939f-54e87fbc0906 as
/network-connections/913fd8c1-f10d-453c-933d-fc58de19b97a (connection=name: TF:32af83e7-042e-47a4-939f-54e87fbc0906, id: /network-
connections/913fd8c1-f10d-453c-933d-fc58de19b97a, service-mode: XR-L1, end-points: [(XR HUB 1|XR-T4, 0), (XR LEAF 1|XR-T1, 0)])

When HUB-LEAF service connection removal is requested, as shown in Table 27, with UUID, IPM
GET/DELETE response pair confirms successful removal. On example, confirmation is received 54ms
(GET response) and completion 67ms (DELETE response).

Table 27. Example IPM delete request-response

[2022-12-22 10:54:36,760] INFO:device.service.drivers.xr.XrDriver:DeleteConfig[XR HUB 1@172.19.219.44]: resources=[('/service[32af83e7-042e-47a4-
939f-54e87fbc0906]', '{"uuid": "32af83e7-042e-47a4-939f-54e87fbc0906"}')]

[2022-12-22 10:54:36,814] INFO:device.service.drivers.xr.cm.cm_connection:process_http_response(): GET:
https://172.19.219.44:443/api/v1/ncs/network-connections qparams=[('content', 'expanded'), ('q', '{"state.name": "TF:32af83e7-042e-47a4-939f-
54e87fbc0906"}')] ==> 200

[2022-12-22 10:54:36,827] INFO:device.service.drivers.xr.cm.cm_connection:process_http_response(): DELETE:
https://172.19.219.44:443/api/v1/ncs/network-connections/913fd8c1-f10d-453c-933d-fc58de19b97a qparams=None ==> 202

[2022-12-22 10:54:36,827] INFO:device.service.drivers.xr.cm.cm_connection:Deleted connection href='/network-connections/913fd8c1-f10d-453c-933d-
fc58de19b97a'

[2022-12-22 10:54:36,827] INFO:device.service.drivers.xr.XrDriver:DeleteConfig: Connection 32af83e7-042e-47a4-939f-54e87fbc0906 deleted (was name:
TF:32af83e7-042e-47a4-939f-54e87fbc0906, id: /network-connections/913fd8c1-f10d-453c-933d-fc58de19b97a, service-mode: XR-L1, end-points: [(XR
HUB 1|XR-T4, 100), (XR LEAF 1|XR-T1, 100)])

Performance evaluation

On XR Constellation Driver performance test executes the same create/delete service sequence 39
times in row, having typically ~12.15 second delay between service requests.

The picture below shows Wireshark capture of SetConfig request on TeraFlowSDN server with two
TCP flows (GET+POST, due TLS encryption these are not visible on Wireshark) between TeraFlowSDN
(IP: 172.19.291.41) and IPM (IP: 172.19.219.44), with second timestamps 71.470 (packet 272) and
71.499 (packet 311), resulting same reference ~29ms time as seen on TeraFlowSDN XR Constellation

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 98 of 180

driver logs timestamps with SetConfig() operation. From flow direction, one can make educated guess
seeing GET operation (41 originates flow) and second part is POST (44 originates flow) as identified on
TeraFlow SDN XR Constellation driver log.

Figure 64. Wireshark capture from TeraFlowSDN and IPM TLS encrypted communication on SetConfig() operation.

The measured performance distribution result chart is presented on Figure 65.

• GetConfig() operations profile is mostly on 25ms-50ms bucket, and just few events 50ms-
75ms and 75ms-100ms bucket;

• SetConfig() operations are profiled mostly to 50ms-75ms bucket, few remaining events in
75ms-100ms and 100ms-250ms buckets;

• DeleteConfig() operations are profiled mostly to 50ms-75ms bucket, and few remaining
events in 25ms-50ms, 75ms-100ms and 100ms-250ms bucket.

As high-level finding shows, the TeraFlowSDN with XR driver and IPM provides a high probability solid
response time for given operations on the used test scenario.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 99 of 180

Figure 65. XR driver performance distribution chart.

4.2. Service Component

In this section, we describe the Service component in charge of managing the life-cycle of the
connectivity services established in the network. For example, different service types could be
requested and different protocols and data models might be used to configure the network
equipment. For this reason, the Service component implements a Service Handler API that enables
network operators to precisely define the service types they need to support and the behaviour for
each of them. Finally, we describe the Service component’s architectural design, the Service Handler
API, and the interface it exposes to the rest of the TeraFlowSDN components. We also provide
evaluation results of its operation.

4.2.1. New Features/Extensions

• Complete integration of Service with Device, Context, and Compute components;
• New Task Scheduler to manage dependency between services and connections, for instance,

in multi-layer scenarios;
• Service handlers:

o L2-VPN service for OpenConfig devices
o L3-VPN service for Emulated devices
o L3-VPN service for OpenConfig devices

 Support for ACLs
o Connectivity service for TAPI devices
o L2 service handler for P4 devices
o Microwave service handler
o TAPI service handler extended to support XR constellation driver

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 100 of 180

4.2.2. 4Final Design

The available service handler plugins are listed below, with a link to the corresponding subsection:

• An L3NM emulated service handler plugin for testing purposes (see Section 4.1.3.1);
• An L2NM emulated service handler plugin for testing purposes (see Section 4.1.3.1);
• An L3NM OpenConfig service handler plugin for testing purposes (see Section 4.1.3.1);
• An L2NM OpenConfig service handler plugin for testing purposes (see Section 4.1.3.1);
• An OLS ONF Transport API [TR547] service handler plugin with support for the XR Constellation

driver (see Section 4.1.3.2);
• An ONF TR-532 microwave service handler plugin (see Section 4.1.3.3); and
• A P4 service handler plugin for next-generation white box switches (see Section 4.1.3.5).

The internal architecture of the Service component is depicted in Figure 66. The gRPC block exposes
the NBI to the rest of TeraFlow components while the Service Servicer dispatches the requests and
issues path computation requests to the PathComp component. To support multi-layer service
establishment, solutions returned by the PathComp component might consist of several (sub-
)connections and (sub-)services. These elements are organized hierarchically and correspond to the
connectivity services supporting the end-to-end service requested. If that service traverses, for
instance, an L3 packet segment, and an L0 TAPI-managed optical segment, the resulting PathComp
reply will contain an L3NM service that will depend on a TAPI service (both returned in the reply); in
this example, the computed connections for these services will be returned.

The Service component incorporates a new Task Scheduler module responsible for organizing the
returned (sub-)services and (sub-connections) and setup/teardown them in an ordered manner.
Indeed, the Task Scheduler is responsible for choosing the appropriate service handler for each (sub-
)service type.

Figure 66: Architecture of the Service component.

4.2.2.1. L3NM -> Device (TID)
The L3NM is intended to provide a network-centric perspective of Layer 3 (L3) VPN services. This data
model may improve communication between the service orchestrator and the network

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 101 of 180

controller/orchestrator by allowing additional network-centric information to be included. It allows
extra features such as resource management, or it can function as a multi-domain orchestration
interface when logical resources must be managed.

The L3NM is not a model of customer service. The internal view of the service may be translated to a
visible to consumers exterior view: the L3VPN Service Model (L3SM).

Customers' specified inputs can be provided into the L3NM. Such requests are often based on an L3SM
template. For example, some sections of the L3SM module can be easily translated to the L3NM, while
others are produced based on the requested service and local rules. Other components are exclusive
to the service provider and do not map directly to the L3SM.

Once a global VPN service has been recorded by the L3NM, the actual activation and provisioning of
the VPN service will entail a number of device modules to fine-tune the essential functionalities for
service delivery. The VPN nodes support these functions, which may be handled via device YANG
modules. A partial list of such device YANG modules is presented below:

• Routing management
• BGP
• PIM
• NAT management
• QoS management
• ACLs

The L3NM ("ietf-l3vpn-ntw") is defined to manage L3VPNs in a service provider network. The "ietf-
l3vpn-ntw" module, in particular, may be used to build, change, and retrieve a network's L3VPN
services.

The "pyang" tool may create the module's entire tree diagram. However, because the entire tree is
too lengthy, it is not included here. Subtrees are supplied instead for the reader's convenience.

• Overall Structure of the Module

The "ietf-l3vpn-ntw" module employs two primary containers: "vpn-profiles" and "vpn-services":

• The provider uses the 'vpn-profiles' container to store a collection of common VPN profiles
that apply to one or more VPN services.

• The container 'vpn-services' manages the set of VPN services controlled within the service
provider network. The data structure 'vpn-service' encapsulates a VPN service.

Figure 67: Overall L3NM Tree Structure.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 102 of 180

o VPN Profiles

The container 'vpn-profiles' allows the VPN service provider to establish and manage a collection of
VPN profiles that apply to one or more VPN services. When designing a VPN service, the model merely
offers an identifier for these profiles to aid in recognizing and binding local regulations.

Figure 68: VPN Profiles Subtree Structure.

o VPN Services

The data structure 'vpn-service' abstracts a VPN service in the service provider network. Each 'vpn-
service' is identifiable by a unique identifier: vpn-id. Such a 'vpn-id' is only relevant locally.

Figure 69: VPN Services Subtree Structure.

• VPN Instance Profiles

VPN instance profiles are intended to factorize data nodes utilized at several levels of the model. The
VPN service level defines generic VPN instance profiles, which are subsequently called at the VPN node

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 103 of 180

and VPN network access levels. The 'profile-id' identifies each VPN instance profile. This identity is
then used to refer to one or more VPN nodes, allowing the controller to identify generic resources to
be set for a specific VRF instance.

Figure 70: VPN Node Subtree Structure.

• VPN Nodes

The vpn-node is an abstraction that describes a collection of common policies that are implemented
on a specific network node (usually a PE) and are part of a single L3VPN service. The 'vpn-node'
command provides an argument that specifies the network node to which it is applied. If the 'ne-id'
relates to a specific PE, the 'vpn-node' will very certainly be mapped to a VRF instance in the node.
The paradigm, however, permits pointing to an abstract node. The network controller will select how
to divide the 'vpn-node' into VRF instances in this situation.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 104 of 180

Figure 71: VPN Node Subtree Structure.

• VPN Network Accesses

The 'vpn-network-access' includes a set of data nodes that describe the access information for the
traffic that belongs to a particular L3VPN.

Figure 72: VPN Network Access Subtree Structure.

4.2.2.2. L2NM -> Device (TID)
A network controller, for example, can expose the L2NM to a service controller within the service
provider's network. The paradigm may be employed in the communication interface between the

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 105 of 180

entity that interacts directly with the customer and the entity in charge of network orchestration and
control by allowing additional network-centric information.

The L2NM enables features such as exposing operational parameters, selecting transport protocols,
and precedence. It also functions as a multi-domain orchestration interface.

The L2NM is designed to support a wide range of Layer 2 Virtual Private Networks, including:

• Virtual Private LAN Service (VPLS);
• Virtual Private Wire Service (VPWS);
• Various flavors of EVPNs.

The L2NM is intended to quickly accommodate future Layer 2 VPN flavors and processes.

The L2NM is used to manage L2VPNs within a service provider's network. The 'ietf-l2vpn-ntw' module
may be used to create, edit, remove, and retrieve L2VPN services in a network controller. The module
is intended to reduce the volume of customer-related data. The "pyang" tool may create the module's
entire tree diagram. Because it is too lengthy, that tree is not included here. Subtrees are supplied
instead for the reader's convenience.

• Overall Structure of the Module

The 'ietf-l2vpn-ntw' module employs two major containers:

• The provider uses the 'vpn-profiles' container to establish and manage a collection of common
VPN profiles that apply to VPN services.

• The container 'vpn-services' manages the set of L2VPN services controlled in the service
provider network. By adding a new instance of 'vpn-service,' the module allows you to create
a new L2VPN service. The data structure 'vpn-service' encapsulates the VPN service.

Figure 73: Overall L2NM Tree Structure.

o VPN Profiles

A VPN service provider uses the 'vpn-profiles' container to establish and manage a collection of VPN
profiles that apply to one or more VPN services.

Each VPN service provider has its own definition of these profiles. When designing a VPN service, the
model simply contains an identifier for these profiles to make detecting and binding local regulations
easier.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 106 of 180

Figure 74: VPN VPN Profiles Subtree

• VPN Services

The data structure vpn-service abstracts an L2VPN service in the service provider network. Each 'vpn-
service' is identifiable by a unique identifier: vpn-id. Such a 'vpn-id' has no relevance outside of the
network controller.

Figure 75: VPN VPN Service Subtree

• Global Parameters Profiles

The 'global-parameters-profile' specifies parameters that can be reused for the same L2VPN service
instance ('vpn-service'). Global parameter profiles are established at the VPN service level, enabled at
the VPN node level, and then utilized at the VPN network access level if they are activated. The 'profile-
id' identifies each VPN instance profile. Some data nodes can be configured at the VPN node and VPN
network access levels. These altered values supersede the global values.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 107 of 180

Figure 76: VPN Global Parameters Profiles Subtree.

• VPN Nodes

The vpn-node is an abstraction representing a collection of policies applied to a network node that is
part of a single vpn-service. A 'vpn-node' has 'vpn-network-accesses,' which are the interfaces used in
the VPN's establishment. The 'vpn-network-accesses' are linked to the client sites.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 108 of 180

Figure 77: VPN Nodes Subtree.

• VPN Network Accesses

A 'vpn-network-access' is a point of access to a VPN service. In other words, this container contains
the parameters that characterize the access information for the traffic associated with a certain
L2VPN.

A 'vpn-network-access' contains information such as the connection used to define the access, the
precise Layer 2 service needs, and so on.

Figure 78: VPN Network Access Subtree.

https://www.rfc-editor.org/rfc/rfc9182.html#name-vpn-network-access-subtree-

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 109 of 180

4.2.2.3. P4-based L2 service handler (UBI)
The P4 network programming language leverages a table-based model to describe the forwarding
pipeline of a network element. This pipeline is only realized when P4 tables are populated with
forwarding rules, which match traffic and perform one or more actions on the patched packets/flows.
This makes P4 different from e.g., YANG-based programming models, which have no notion of runtime
rules. To this end, dedicated service handlers are required for P4-based topologies, as the service layer
needs to oversee the underlying topology and provision forwarding rules to all devices across the
service path.

In TeraFlowSDN release v2, an L2 service handler is developed for P4-based topologies. This service
handler implements the same service L2NM type described previously in this section but uses the P4
device driver plugin to translate connectivity requirements into forwarding rules for the underlying P4
devices. Figure X depicts an integrated TeraFlowSDN environment, where the P4 L2NM service
handler operates atop the P4 SBI driver, also in tandem with Context, Monitoring, Service, Path
Computation, Policy, and the WebUI components. This deployment manages an example P4 topology
used to demonstrate the functionality of the P4 service handler, although the concept is abstract and
can work with any P4 topology.

Figure 79: P4 L2NM service handler on an example P4-based topology.

As shown in Figure 79, a six-node topology of software-based P4 switches interconnects a client with
a remote server. TeraFlowSDN gets a request to establish connectivity between two endpoints, i.e., a
client connected to port C of sw1 and a server connected to port C of sw6. To do so, the Service
component uses a Path Computation Engine (PCE) in TFS to compute an end-to-end path. As shown
in Figure 80, the Path Computation component replies with a list of endpoints that comprise the path
sw1-->sw2-->sw4-->sw6. Then, the P4 service handler parses the returned endpoints and computes
forwarding rules for the switches that the path traverses. In this example, 4 forwarding rules are sent
by the P4 device driver to sw1, sw2, sw4, and sw6 as shown in Figure 79. After all switches install the
requested rules, the end-to-end path is established. To facilitate rule installation, the L2NM P4 service
handler provides a rule template (see Figure Y) where the endpoints’ information is configurable.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 110 of 180

Specifically, the template rule matches on a configurable ingress port of a P4 device and output the
packet to a configurable egress port using a corresponding P4 action. This way, rules for multiple
devices and endpoints can be replicated and configured very quickly, while introducing no complexity
to the service handler’s code.

Figure 80: Code snippet with P4 rule template using configurable endpoints.

This service handler will be used in WP5 to realize a service restoration workflow atop P4 topologies
as already described in D5.2 [6].

4.2.3. Final Interfaces

Service is the TeraFlowSDN component in charge of managing the creation, update and removal of
connectivity services through the SBI component. Different connectivity service types, device types
and device protocols might be needed to support the connectivity service management; for this
reason, the Service component provides a Service Handler API that enables developers to implement
new service handlers and integrate them into the TeraFlowSDN.

4.2.3.1. L2VPN Network Model (TID)
This use case allows the provisioning, modification and deletion of a Layer 2 VPN service spanning one
or more IP/MPLS routers via the SDN controller using a subset of the L2NM data model (RFC 9291).
The L2VPN creates a virtual routing network instance (known as ELAN) in each of the routers involved
in service deployment. The routing instance (ELAN) created at every router allows the routing
information propagation between the sites involved in the service.

The pre-requisites for this use case are the followings:

1. Reachability between PE devices where the L2 VPN is going to be deployed.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 111 of 180

The main set of functionalities covered in this use case are the followings:

2. To provide a name and a description for the new L2VPN service;
3. The type and data plane encapsulation in this use case is limited to L2VPNs (type=L2VSI)

over MPLS (encapsulation-type=MPLS);
4. To configure the operational state and configuration parameters relating to the forwarding

database of the network instance;
5. Enable/disable the configured network instance on the network element (Note: Some

vendor's implementations could not allow the disable function, so the network instance will
be enabled immediately after creation and maintain enable until it is deleted);

6. Attach subinterface(s) to be bound to the L2VPN;
7. Attach connection points within a forwarding instance.

Functional Requirements

The following steps are used to create the L2VPN Service. Each step has an associated set of
functionalities:

Create VPN-Nodes:

• Create ELAN Name
• Change Operational status / Administrative status

Create each VPN Network access to the corresponding VPN Node. The VPN network access refers to
the L2 termination-points to the VPN-Node:

• Create Interfaces (1 …𝑛𝑛);
• For each interface Add Interface-type;
• Add VLAN information to an interface;
• Add MTU configuration to interface;
• Change Administrative Status on the interface.

Attach interface to Network Instance:

• Add interface to VPN Node.

Attach virtual circuits to Network Instance:

• Add remote end-point.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 112 of 180

Figure 81: L2VPN functional requirements.

4.2.3.2. 1L3VPN Network Model (TID)
L3VPN services are widely deployed in IP/MPLS networks. This use case allows the provisioning,
modification and deletion of a Layer 3 VPN service spanning one or more IP/MPLS routers via the SDN
controller using a subset of the L3NM data model (RFC 9182). The L3VPN creates a virtual routing
network instance (usually known as VRF) in each of the routers involved in service deployment. The
routing instance (VRF) created at every router allows the routing information propagation between
the sites involved in the service.

The pre-requisites for this use case are the followings:

• Reachability between PE devices where the L3 VPN is going to be deployed;
• BGP reachability with VPN address family enabled.

The main set of functionalities covered in this use case are the followings:

• To provide a name and a description for the new L3VPN service;
• The type and data plane encapsulation in this use case is limited to BGP-based L3VPNs

(type=L3VRF) over MPLS (encapsulation-type=MPLS);
• Set the route distinguisher (RD) used for each VRF when it is signaled via BGP. In this use

case, the RD must be explicitly provided;

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 113 of 180

• It is possible to configure a router-id to identify the routing device and used by BGP and
OSPF to function in a routing instance;

• Enable/disable the configured network instance on the network element (Note: Some
vendors implementation could not allow disable it so that the network instance will be
enabled immediately after creation and keep enable until it is deleted);

• The label allocation (per prefix, per next-hop or a single label per VRF) is selected by each
router vendor. For ADVA, which allows its selection, it is fixed to single label per VRF;

• To enable the Address Families (AF) supported within the L3VPN. Note that some vendors
enable all families by default (Juniper);

• To configure Route Target for export and import. The controller will take care of creating the
policies in the device automatically;

• Create vpn_node (VRF) profiles to reuse when there are multiple VRFs;
• VPN topologies can be indicated (hub & spoke, full mesh, custom) as informative. The

topology is achieved via RT assigned for import and export;
• Attach subinterface(s) to be bound to the L3VPN at L2 (single or double tagging, Lag

members if apply) and configure L3 information (IP address, Loopback type interface);
• To attach existing routing policies to VPN for import and export;
• To control the VPN lifecycle using status variables such as: pre-deployment, testing or up;
• To add a static route to a VPN node (VRF) indicating prefix, next hop and (optional) metric.

Functional Requirements

The following steps are used to create the L3VPN Service, each step has associated a set of
functionalities:

Create VPN-Nodes:

• Create VRF Name;
• Create Router ID;
• Create Route Distinguisher;
• Attach Import / Export Policies;
• Change Operational status / Administrative status;
• Define Service Topology (e.g., hub-spoke, multi-point-to-multi-point);
• Define node Topology-role;
• Create Maximum Route Limits into a VRF.

Create each of the VPN Network access to the corresponding VPN Node. The VPN network access
refers to the L3 termination-points to the VPN-Node:

• Crate Interfaces (1 …𝑛𝑛);
• For each interface Add Interface-type;
• For each interface Add Interface Encapsulation-type;
• Add VLAN information to an interface;
• Add Addressing parameters to an interface;
• Add MTU configuration to interface;
• Change Administrative Status on the interface.

Attach interface to Network Instance:

• Add interface to VPN Node.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 114 of 180

Create Import and Export conditions:

• Add a routing policy to the VPN Node;
• Create community members into a community set;
• Add community values to routes imported from a particular protocol;
• Filter based on Prefix List.

Attach import/export policy to Network Instance:

• Add import policy to VPN Node;
• Add export policy to VPN Node.

Add Routing protocol to the CE-PE connectivity:

• Add CE-PE static routing connectivity;
• Add static routing redistribution into the VRF.

Figure 82: L3VPN functional requirements.

4.2.3.3. P4-based L2 service handler
The L2NM P4 service handler implements two key RPCs that the Service component exposes to other
TeraFlowSDN components or third parties. These RPCs are shown in Table 28. These RCPs allow to
create a set of endpoints that a service traverses, update these endpoints in case of a change, and

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 115 of 180

delete these endpoints when the service is no longer active. With these two RPCs, the service handler
can establish L2 connectivity on arbitrary P4 topologies.

Table 28: RPCs implemented by the L2NM P4 service handler

RPC Method Name Parameters Results
SetEndpoint List of endpoints List of boolean status/endpoint operation
DeleteEndpoint List of endpoints List of boolean status/endpoint operation

4.2.3.4. Microwave service handler
The MW Service Handler implements two key RPCs that the Service component exposes to be used
by other TeraFlow SDN components. This RPC is described in Table 29 below.

With these two RPCs, the service handler can manage the configuration of an L3VPN service traversing
the MW domain.

These two RCPs allow both to create an L2 path identified by Service UUID between two MW edge
endpoints that are traversed by an L3VPN service and then to delete the path when it is no more
required.

Table 29: RPCs implemented by the MW service handler

RPC Method Name Parameters Results
SetEndpoint L2 Service UUID

List of edge
endpoints

Boolean status reporting operation result

DeleteEndpoint L2 Service UUID Boolean status reporting operation result

4.2.3.5. REST servicer handler
The TAPI service handler implements two key RPCs that the Service component exposes to other
TeraFlowSDN components or third parties. These RPCs are shown in Table 30. These RCPs allow to
create a set of endpoints that a service traverses, update these endpoints in case of a change, and
delete these endpoints when the service is no longer active. With these two RPCs, the service handler
can establish TAPI connectivity on arbitrary TAPI-enabled OLS controllers.

Table 30: RPCs implemented by the TAPI service handler

RPC Method Name Parameters Results
SetEndpoint List of endpoints List of boolean status/endpoint operation
DeleteEndpoint List of endpoints List of boolean status/endpoint operation

TAPI service handler is extended to support XR Constellation driver due to service layer synergies. In
addition, the TAPI service is extended with a new attribute describing planned optical bandwidth on
XR announced port, which XR Constellation driver updates via IPM REST API towards XR constellation.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 116 of 180

4.2.4. Final Operational Workflows

The operational workflows for the Service component are described in this section. The workflows
have been generalized to cover all combinations of connectivity service types, service handlers, device
types and device drivers. Besides, the workflow assumes a request from an external OSS/BSS while it
is not mandatory and might come from other TeraFlow components.

Three workflows directly initiated by external components/systems are described, i.e., CreateService,
UpdateService, and DeleteService. Besides, given its complexity, an additional workflow corresponding
to the Execute method of the internal Task Scheduler used by the Service component. This
TaskScheduler:Executor method is described separately since it is used by both the UpdateService and
the DeleteService.

The CreateService workflow (shown in Figure 83) starts when some entity, e.g., the Slice component
or an OSS/BSS, triggers a connectivity service configuration. Given that some systems might require
to reserve a connectivity service identifier before adding endpoints, constraints, etc. to that
connectivity service, the creation of a connectivity service is done in two steps. The first step consists
in creating an empty connectivity service where only the connectivity service type is specified and
returning the identifier. The second step (described below) consists in updating the connectivity
service by populating the required fields.

Figure 83: Generic CreateService workflow

Now focusing on the UpdateService (shown in Figure 84), the Service component first interrogates the
Context component to retrieve the most up-to-date version of the connectivity service. Next, it sets
the state of the connectivity service to PLANNED and requests a path computation to the PathComp
component to decide whether new paths are required for possibly new endpoints added or
constraints changed.

The response of the PathComp component includes, at least, the connectivity service requested. If a
path has been found for that service, it also carries the connection path computed for it. Besides, in
case of traversing multiple layers, for instance, a packet-layer connection requiring new underlying
optical connection(s), the reply will also include one or more sub-services with the corresponding sub-
connections supporting them.

Then, a Task Scheduler is instantiated, and the (sub-)services and (sub-)connections computed by the
PathComp are correlated and scheduled. For instance, when an optical connection supports a packet
connection, the Service component should first setup the optical-layer connection and only when it
becomes operational, setup the packet-layer connection. Finally, when correlated and scheduled, the

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 117 of 180

Execute method of the TaskScheduler (described below) is executed to perform all the required
configuration operations. Upon completion, the service is updated in the Context component, and the
service identifier is returned to the caller entity.

Figure 84: Generic UpdateService workflow.

The DeleteService workflow (depicted in Figure 85) begins by retrieving from the context component
the Service to be deleted and marking it as PENDING_REMOVAL. Then, a TaskScheduler is instantiated
and populated with the services and connections properly retrieved from the Context component and
scheduled according to their dependencies. Again, a connection cannot be deleted if it supports an
ACTIVE service. A service supported by sub-services needs to be deactivated and removed before the
sub-services and sub-connections are torn down. When populated, the Execute method of the Task
Scheduler is executed and, upon completing the execution of the tasks, the control is returned to the
caller entity.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 118 of 180

Figure 85: Generic DeleteService workflow.

The Task Scheduler is responsible for executing the tasks to set-up and tear-down services and
connections in the appropriate order. For that, the correlation and scheduling methods consist in
creating a Directed Acyclic Graph of tasks and assigning as predecessors the tasks that need to be
completed before the actual task can be initiated.

As an illustrative example, a connection between routers R1 and R3 in the Multi-layer network
depicted in Figure 86 needs to be established. For that, we need to pass through R2, but there is no
direct connection between R1 and R2, and between R2 and R3. Thus, we must establish virtual links
(dotted lines) passing through the underlying optical network (Reconfigurable Optical Add Drop
Multiplexers depicted in green).

Figure 86: Example Multi-Layer Network.

To resolve this, the PathComp component would retrieve 3 services and 3 connections as follows:

• Main Service (Svc:R1-R3) on the packet layer (uses L2NM or L3NM depending on connection
settings) between routers R1 and R3 that depends on connection R1-R3.

o Connection (Conn:R1-R3) that depends on sub-services R1-R2 and R2-R3.
 Sub-Service (Svc:R1-R2) on the optical layer (TAPI service handler) between

transponders in routers R1 and R2 that depends on connection R1-R2.
• Connection (Conn:R1-R2) on the optical layer.

 Sub-Service (Svc:R2-R3) on the optical layer (TAPI service handler) between
transponders in routers R2 and R3 that depends on connection R2-R3.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 119 of 180

• Connection (Conn:R2-R3) on the optical layer.

The set of supported schedulable tasks are:

• For setup operations:
o ConfigureConnection(connection): uses the selected service handler to compose the

set of configuration rules for the traversed devices and interacts with the Device
component to apply these configurations.

• For teardown operations:
o DeconfigureConnection(connection): uses the selected service handler to compose

the set of deconfiguration rules for the traversed devices and interacts with the
Device component to apply these deconfigurations.

o DeleteService(service): Removes a service when it has been deconfigured on the
traversed devices.

• For both operations:
o SetServiceState(service, new state): Changes the state of a (sub-)service during the

setup process (e.g., mark a service as ACTIVE, PENDING_REMOVAL, etc).

The set of tasks that would result from the Task Scheduler would be as follows (note that multiple
options are feasible):

• ServiceSetState(Svc:R1-R3, state=PLANNING)
• ServiceSetState(Svc:R1-R2, state=PLANNING)
• ConnectionConfigure(Conn:R1-R2)
• ServiceSetState(Svc:R1-R2, state=ACTIVE)
• ServiceSetState(Svc:R2-R3, state=PLANNING)
• ConnectionConfigure(Conn:R2-R3)
• ServiceSetState(Svc:R2-R3, state=ACTIVE)
• ConnectionConfigure(Conn:R1-R3)
• ServiceSetState(Svc:R1-R3, state=ACTIVE)

The scheduling for a delete operation would be extrapolated by reversing the sequence of tasks,
replacing tasks ServiceSetState(PLANNED) by ServiceDelete(), replacing ConnectionConfigure() by
ConnectionDeconfigure(), and adding required ServiceSetState(PENDING_REMOVAL) tasks at the
beginning of the sequence.

Now that the Task Executor has been described conceptually, the workflow for the Execute method
of the Task Scheduler illustrated in Figure 87 can be understood.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 120 of 180

Figure 87: Generic TaskScheduler::Execute workflow.

Even though this workflow is general, it is complete enough to cover all the cases supported by the
different Service Handlers. Note that the ConnectionConfigure and ConnectionDeconfigure are the
responsible for instantiating the appropriate service handlers taking as input the service types and the
specifications of the traversed devices (e.g., device type, supported drivers, etc). Besides, the
ConnectionConfigure and ConnectionDeconfigure tasks use the ConfigureDevice RPC provided by the
Device component to interact with the traversed devices. The details on the ConfigureDevice
workflow are presented in section 4.1.5.

4.2.5. Evaluation

The Service component's evaluation consists of evaluating each Service Handler using reasonable
scenarios. In particular, execution time spent by the different methods of the Service Handler API.
Note that methods evaluated are those in charge of setting and deleting endpoints, i.e., SetEndpoint
and DeleteEndpoint. The other four methods SetConfigRule, DeleteConfigRule, SetConstraint and
DeleteConstraint are included in the Service Handler API, but are still not implemented. They are left
as placeholders for future extensions to manage dynamic changes in constraints and configuration
rules not addressed in the current implementation of the TeraFlow controller.

PERFORMANCE NOTE: Current activities involve integrating a new implementation of the Context
component based on CockroachDB, a distributed, scalable and performant relational database. The
current implementation is based on a database that does not supporting concurrency and with limited

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 121 of 180

performance, which results in bad performance results. Given that Service Handlers highly rely on
Context component and Device (which in turn makes use of Context to correlate configuration rules
to be configured), the performance reported in this section should be considered preliminary and for
functional evaluation only. We expect to achieve better performance after finishing this integration.
The final results will be released in deliverable D5.3 [8].

4.2.5.1. L2VPN Network Model
Experimental setup

We used the same setup (server and micro-service deployment) described for the OpenConfig Device
Driver (see section 4.1.3.4).

Functional Evaluation

The functional evaluation of the L2VPN Network Model (L2NM) Service Handler using OpenConfig
(L2NM OpenConfig) was done together with the OpenConfig Device Driver (see Section 4.1.3.4).
Service Handler performance evaluation results were filtered from the overall L2NM+L3NM
performance evaluation.

Numerical Results

The considered metric for assessing the L2NM OpenConfig Service Handler is the delay incurred by
the service handler, including the overhead of the device component, the corresponding OpenConfig
Device Driver, the Context component, and the setup of the underlying routers. The specifications of
the requests are those described in Section 4.1.3.4 for the OpenConfig Device Driver.

The results obtained from the OpenConfig device driver in section 4.1.6.4, directly affect the
performance of the L2NM OpenConfig Service Handler, as both the SetEndpoint and DeleteEndpoint
RPCs invoke low-level RPCs to the TeraFlowSDN SBI component, which re-directs these RPCs to the
SetConfig/GetConfig/DeleteConifig RPCs of the OpenConfig device driver.

In Figure 88, it is shown the CDF of the L2NM OpenConfig Service Handler latency for the generated
100 requests. We observe that the majority of SetEndpoint and DeleteEndpoint requests take more
than 100 seconds. The origin of this delay comes from: (i) the configuration of the rules in the packet
routers, and (ii) from the database receiving many query and update requests in parallel and having
to process them sequentially. The first delay comes by construction of the equipment and is out of the
scope of the TeraFlow project activities. We expect to resolve the second delay after completing the
integration of the new version of the Context component using the CockroackDB.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 122 of 180

Figure 88: CDF for the L2VPN Network Model Service Handler with OpenConfig Delay.

4.2.5.2. L3VPN Network Model
Experimental setup

We used the same setup (server and micro-service deployment) described for the OpenConfig Device
Driver (see Section 4.1.3.4).

Functional Evaluation

The functional evaluation of the L3VPN Network Model (L3NM) Service Handler using OpenConfig
(L3NM OpenConfig) was done together with the OpenConfig Device Driver (see Section 4.1.3.4).
Service Handler performance evaluation results were filtered from the overall L2NM+L3NM
performance evaluation.

Numerical Results

The considered metric for assessing the L3NM OpenConfig Service Handler is the delay incurred by
the service handler, including the overhead of the device component, the corresponding OpenConfig
Device Driver, the Context component, and the setup of the underlying routers. The specifications of
the requests are those described in Section 4.1.3.4 for the OpenConfig Device Driver.

The results obtained from the OpenConfig device driver in section 4.1.6.4, directly affect the
performance of the L3NM OpenConfig Service Handler, as both the SetEndpoint and DeleteEndpoint
RPCs invoke low-level RPCs to the TeraFlowSDN SBI component, which re-directs these RPCs to the
SetConfig/GetConfig/DeleteConifig RPCs of the OpenConfig device driver.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 123 of 180

In Figure 89, it is shown the CDF of the L3NM OpenConfig Service Handler latency for the generated
100 requests. We observe that majority of SetEndpoint and DeleteEndpoint requests take more than
100 seconds. The origin of this delay comes from: (i) the configuration of the rules in the packet
routers, and (ii) from the database receiving many query and update requests in parallel and having
to process them sequentially. The first delay comes by construction of the equipment and is out of the
scope of the TeraFlow project activities. We expect to resolve the second delay after completing the
integration of the new version of the Context component using the CockroackDB.

Figure 89: CDF for the L3VPN Network Model Service Handler with OpenConfig Delay.

4.2.5.3. P4-based L2 service handler
Experimental setup

To conduct the experiments of the L2NM P4 service handler, we used the same setup as in the case
of the P4 SBI driver (see Section 4.1.6). TeraFlowSDN is deployed as a Kubernetes service on this
testbed, and no resource limits are se to the Service, SBI, and Context components to allow stress
testing.

Benchmarking procedure

To benchmark the P4 service handler we use an emulated (Mininet) topology of one or more software-
based P4 switches. In each experiment, an increasing number of L2NM services are created atop pairs
of P4 devices. The number of services increases linearly between 1-5 services.

The following benchmark measures the total time (in seconds) required to perform service
creation/deletion for 1-5 services. The CreateService RPC is invoked by an external client, which
measures the time it takes to complete the service request before issuing the next one.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 124 of 180

Service creation: Figure 90 depicts the total execution time in seconds (y-axis) required to provision 1-
5 L2 P4 services vs. the time (x-axis). As highlighted by the points, this time is:

• 144ms for 1 service (indicated by the red point);
• 523ms for 2 services (indicated by the green point);
• 884ms for 3 services (indicated by the blue point);
• 1610ms for 4 services (indicated by the magenta point);
• 2600ms for 5 services (indicated by the white point).

We fit a linear function on these points to quantify the additional time per service, which is 600ms per
service.

Figure 90: Latency to establish 1-5 L2NM services atop pairs of P4 devices.

Service deletion: Figure 91 depicts the total execution time in seconds (y-axis) required to
decommission 1-5 L2 P4 services vs. the time (x-axis) using the SetEndpoint RPC of the P4-based L2
service handler. As highlighted by the points, this time is:

• 180ms for 1 service (indicated by the red point)
• 440ms for 2 services (indicated by the green point)
• 1230ms for 3 services (indicated by the blue point)
• 1890ms for 4 services (indicated by the magenta point)
• 2790ms for 5 services (indicated by the white point)

We fit a linear function on these points to quantify the additional time per service, which is 667ms per
service using the DeleteEndpoint RPC of the P4-based L2 service handler. This time is slightly higher
than the SetEndpoint RPC, but still comparable.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 125 of 180

Figure 91: Latency to tear 1-5 L2NM services down atop pairs of P4 devices.

The results obtained from the P4 device driver in Section Y above directly affect the performance of
the P4 service handler, as both the SetEndpoint and DeleteEndpoint RPCs invoke low-level RPCs to the
TeraFlowSDN SBI component, which re-directs these RPCs to the SetConfig/GetConfig/DeleteConifig
RPCs of the P4 device driver.

4.2.5.4. Microwave service handler
Experimental setup

We used the same setup (server and micro-service deployment) described for the MicroWave Device
Driver (see section 4.1.6.3).

Functional Evaluation

The functional evaluation of the MicroWave Service Handler was done together with the MicroWave
Device Driver (see section 4.1.6.3).

Numerical Results

The considered metric for assessing the MW Service Handler is the delay incurred by the service
handler, including the overhead of the device component, the corresponding MicroWave Device
Driver, the Context component, the MicroWave controller, and the setup of the underlying Network
Equipment. The specifications of the requests are those described in section 4.1.6.3 for the
MicroWave Device Driver.

In Figure 92, it is shown the CDF of the MicroWave Service Handler latency for the generated 100
requests. We observe that the majority of SetEndpoint and DeleteEndpoint requests take around 50
seconds. The origin of this delay comes from: (i) the database receiving many query and update
requests in parallel and having to process them sequentially. We expect to resolve this issue after
completing the integration of the new version of the Context component using the CockroackDB; and
(ii) from the MicroWave Network Equipment having to process sequentially the configuration of the
rules in the devices. This second limitation comes by construction of the equipment and is out of the
scope of the TeraFlow project activities.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 126 of 180

Figure 92: CDF for the MicroWave Service Handler Delay.

4.2.5.5. REST servicer handler (TAPI and XR Constellation)
Experimental setup

We used the same setup (server and micro-service deployment) described for the Transport API
Device Driver Evaluation (see section 4.1.6.2) including the proprietary Open Line System controller
exposing a Transport API NBI and controlling an emulated underlying optical data plane formed by 4
nodes with 10 service interconnection points each of them.

Numerical Results

The metric for assessing the Transport API Service Handler is the delay incurred by the service handler
to (de)configure the optical connections on the OLS controller through the Device component and the
Transport API device driver. This includes the dispatching time of these requests within the OLS
controller and the overheads introduced by the Device and Context components. The request
generation is as for the Transport API Device Driver Evaluation (see section 4.1.6.2).

In Figure 93, it is shown the CDF of the Transport API Service Handler latency for the generated 100
requests. We observe that the majority of configuration/deconfiguration requests take around 10s.
We are currently on the integration phase of CockroachDB, a distributed and scalable database, in
Context component. We expect to achieve much better performance after finishing this integration.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 127 of 180

Figure 93: CDF for the Transport API Service Handler Delay.

4.3. Forecaster Component

The final report on the Forecaster TeraFlowSDN component, focuses on:

• The new features introduced to this component;
• The design overview of the Forecaster component;
• The set of interfaces of the Forecaster component;
• The operational workflows of the Forecaster component;
• A performance evaluation study.

4.3.1. New Features/Extensions

This section summarizes the complete features of the Forecaster component, as it is a new component
part of TeraFlowSDN release v2.

• Forecaster can obtain the historic of requested and serviced connectivity services with
duration and capacity constraints from Context component;

• Forecaster includes ML algorithms (currently using Prophet) for predicting traffic forecasts;
• Traffic forecasts are analyzed before determining whether to accept a new service request.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 128 of 180

4.3.2. Final Design

Figure 94 Traffic forecasting with SDN controller. Source of sample network: [SDNlib10]

Figure 94 shows the proposed component behaviour. The TeraFlowSDN controller can monitor
current network status and obtain timestamped traffic matrices on top of as an example pan-
European core network (we are using Geant as an example [19]). Then, a traffic forecasting application
(forecaster) can introduce ML-based algorithms to predict the network status in the future. This
information can be provided to the OSS/BSS in order to trigger necessary link updates, as well as
provided back to the SDN controller in order to limit resources allocated to specific network links.

Forecaster is a novel TFS component that can perform proactive SDN traffic prediction (i.e., forecasts)
using ML algorithms. For example, it is able to collect real-time Key Performance Indicators (KPI), such
as link occupancy, and use ML algorithms to forecast where and when a problem (e.g., link resource
unavailable) is likely to occur, so as to reroute traffic before it happens.

Multiple traffic forecasting libraries can be introduced to provide the component with multiple
engines. One of the possibilities mentioned above is the Prophet [20] library, which already includes
a seasonal model for data forecasts. Another possibility could be the introduction of AutoML [21].
AutoML does not require training; thus, no previous data modelling is required.

4.3.3. Final Interfaces

The interfaces provided by the Forecaster component (see for reference Table 31) provide a complete
network forecast (GetForecastOfTopology) by introducing a topology identifier or obtain a specific
forecast of a link (GetForecastOfLink), by introducing a link identifier. A Forecast is a data structure
that contains an array of timestamped predictions for a specified time period for a specific link.
Another provided interface allows to check if a new requested connectivity service will have resources
available in the future. To this end a link resource availability threshold is configured and the Forecast
component provides a ForecastPrediction with the decision.

RPC Method Name Parameters Results
GetForecastOfTopology context.TopologyId Forecast
GetForecastOfLink context.LinkId Forecast
CheckService context.ServiceId ForecastPrediction

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 129 of 180

Table 31 Forecaster interface definition

4.3.4. Final Operational Workflows

Figure 95 describes the proposed sequence diagram to provide traffic forecasts within TeraFlowSDN
controller. Two different usages are depicted. The first refers to link/topology availability forecast,
while the second focuses on the analysis of link availability for an upcoming connectivity service
request.

A user, through Business Support System (BSS) or Operations Support System (OSS) can request a
link/topology traffic usage forecast (Step 1) that is received by the Forecaster Component. At the
receipt of a traffic forecast request, topology (Steps 2-3) and Service (Steps 4-5) are requested to
Context, which acts as the TFS database. A forecast is computed using the received information and
provided to the user (Step 6).

Another supported feature is the analysis of a service requested by the OSS/BSS (Step 7). Service
component requests a forecast prediction to Forecast component based on the received Service
request (Step 8). The prediction mechanism detailed in the previous paragraph is detailed (Step 9) and
a decision is taken using a certain bandwidth utilization threshold and notified to Service component
(Step 10), which can decide not to allocate resources based on the prediction or follow standard
service allocation procedures

Figure 95 Forecaster Sequence Diagram

4.3.5. Evaluation

The Forecaster component has been programmed using python. It offers a gRPC interface based on
a protocol buffer, and it can interact with the other necessary TFS micro-service (i.e., Context and

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 130 of 180

Service). It includes Prophet library [PRO22] and it is expected to be extended with other forecasting
libraries, such as AutoML.

In order to provide meaningful forecasts, we have introduced in TFS an emulated GEANT network with
link traffic matrices provided in [19].

Figure 96 CDF of traffic forecasting delay

Figure 96 shows the Cumulative Distribution Function for the 464 link traffic forecast delays computed
for the specified GEANT network. The mean link forecast delay is 8.72 seconds and its standard
deviation is 6.72 seconds.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 131 of 180

Figure 97 Example of traffic forecast for de-at link

Figure 98 Example of traffic forecast for hr-at link

Figure 97 and Figure 98 provide two examples of link forecasts. It can be observed that a yearly
forecast has been generated per link. Other necessary values considered have been the maximum
limit for bandwidth usage in order not to forecast negative values. Figure 97 has a smoother predicted
growth rate, while Figure 98 growth rate is almost exponential.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 132 of 180

5. SDN Automation
This section provides the final design overview, interfaces, operational workflows, and performance
evaluation results of the TeraFlowSDN components of T3.3, i.e., the Automation component (see
Section 5.1) and the Policy Management component (see Section 5.2).

5.1. Automation (ZTP) Component

The final report on the Automation TeraFlowSDN component, also known as zero-touch provisioning
(ZTP) component, focuses on:

• The new features introduced to this component since the first TeraFlowSDN release (see
Section 5.1.1);

• The final design overview of the Automation component (see Section 5.1.2);
• The final set of interfaces of the Automation component (see Section 5.1.3);
• The final operational workflows of the Automation component (see Section 5.1.4);
• A performance evaluation study of key Automation RPCs (see Section 5.1.5).

5.1.1. New Features/Extensions

This section summarizes the new features added to the Automation component during the second
year of the TeraFlow EU project, as part of the TeraFlow release v2. These features are added atop
the TeraFlow release v1, which was announced in March 2022.

• Automated device update using the newly developed ztpUpdate RPC;
• Automated device deletion using the newly developed ztpDelete RPC;
• Additional integration tests to better support the TeraFlow uses cases.

5.1.2. Final Design

The Automation component aims to provide zero-touch device onboarding, reconfiguration, and
deletion functions to the TeraFlowSDN controller and similar SDN controllers or overlay network
management tools. To meet the automation design objectives, the Automation component is
designed according to Figure 99.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 133 of 180

Figure 99: Overview of the final design of the TeraFlowSDN Automation component.

As shown in Figure 99, the Automation component mainly interacts with the Context and Device
components. This is done via internal classes of the Automation component that implement (i) gRPC
clients towards Device and Context components, acting as service consumers of external components’
services and (ii) an overlay gateway layer that interacts with both services through the gRPC clients,
specifically:

• The ContextGateway interface communicates with a Context Service gRPC client to invoke key
RPC functions described in context.proto file;

• The ContextService interface implements the getDevice() and getDeviceEvents() methods by
communicating with a Context gRPC client through the use of ContextGateway interface;

• The DeviceGateway interface communicates with a Device Service gRPC client to invoke key
RPC functions described in device.proto file;

• The DeviceService interface implements the getInitialConfiguration(), configureDevice(), and
deleteDevice() methods by communicating with a Device gRPC client through the use of
DeviceGateway interface.

The Automation component implements an internal Automation Service (see Figure 99) of similar
architecture, which consumes the Device and Context services above to offer Automation services as
follows:

• The AutomationGateway interface implements all the RPCs that are described in
automation.proto file. Section 5.1.3 provides details about these RPCs;

• The AutomationService interface implements the addDevice(), updateDevice(), and
deleteDevice() methods by communicating with a Context gRPC client and a Device gRPC
client through the use of ContextService interface and DeviceService interface respectively.

5.1.3. Final Interfaces

The Automation component offers two interfaces. The first interface, titled “Service API” in Figure 99,
exposes basic automation functions to the rest of the TeraFlowSDN components. The second
interface, titled “Events API” in Figure 99, allows the Automation component to register, to receive,

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 134 of 180

thus react upon relevant events from key TeraFlowSDN components. Both interfaces are described in
the rest of this section.

Automation Service API

Table 32 displays an overview of the RPC methods exposed by the Automation component.
Specifically, the main RPC methods provide a way to automatically (i) onboard a new device (i.e.,
ztpAdd), (ii) reconfigure an already onboarded device (i.e., ztpUpdate), and (iii) remove an onboarded
device (i.e., ztpDelete) or all the onboarded devices (i.e., ztpDeleteAll). In addition to those key
functions, the Automation component also exposes two read-only RPCs that allow other TeraFlowSDN
components to access the current state of device roles associated to the various devices. Specifically,
the Automation component allows querying a device role using a device role ID as input (i.e.,
ztpGetDeviceRole) or querying a list of device roles associated with a specific device ID (i.e.,
ztpGetDeviceRolesByDeviceId).

Table 32: Service interface definition for the Automation component.

RPC Method Name Parameters Results
ztpAdd DeviceRole DeviceRoleState
ztpUpdate DeviceRoleConfig DeviceRoleState
ztpDelete DeviceRole DeviceRoleState
ztpDeleteAll context.Empty DeviceDeletionResult
ztpGetDeviceRole DeviceRoleId DeviceRole
ZtpGetDeviceRolesByDeviceId context.DeviceId DeviceRoleList

Automation Events API

Apart from the main Automation services, the Automation component exploits a publish-subscribe
TeraFlowSDN mechanism to dynamically associate components with relevant events that require
immediate actions. This is the role of the “Events’ API”. The Automation component relates its services
with three basic events, as shown in Table 33.

Table 33: Events’ publish-subscribe interface for the Automation component.

Event Name Triggered by Triggers Results
DEVICE_ADD Context

component
Automation
component
ztpAdd RPC

New Device object with an associated:
DeviceStatus = ENABLED
DeviceRoleState =
 ZTP_DEV_STATE_CREATED

DEVICE_UPDATE Web UI
component or
external entity

Automation
component
ztpUpdate
RPC

Updated Device object with an associated:
• DeviceRoleState =

 ZTP_DEV_STATE_UPDATED

DEVICE_DELETE Web UI
component or
external entity

Automation
component
ztpDelete RPC

Deleted Device object with an associated:
• DeviceStatus = DISABLED
• DeviceRoleState =

 ZTP_DEV_STATE_DELETED

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 135 of 180

5.1.4. Final Operational Workflows

This section provides detailed sequence diagrams for the most important RPCs of the Automation
component, highlighting the interaction of the Automation component with other TeraFlowSDN
components or external entities.

Automated device onboarding workflow

Upon issuing a request to add a new device, the operator calls the Device component’s AddDevice
method. This method initiates a connection with the requested device, and if successfully connected,
the device driver obtains the device configuration. This configuration is turned into a DeviceConfig
object and pushed to the Context database. A “DEVICE_ADD” event is generated upon success,
notifying that a new device is associated with a TeraFlowSDN device driver plugin. As a result, the
Context component generates a notification through the “Events API”. The Automation component
receives this event, thus the ztpAdd RPC is automatically triggered as shown in Figure 100. First, the
Automation component requests the new Device object from the Context database, resulting in a
“getDevice” call to the Device component. Then, if this device is not already configured, the
Automation component requests this device’s initial configuration parameters by issuing a
“getInitialConfig” RPC to the Device component through the Context component. Upon receiving an
updated DeviceConfig object, the Automation component loops through the configuration entries of
its local object and updates the relevant entries according to the newly fetched DeviceConfig object.
Next, the updated device object is pushed to the Device component and stored to the Context
database via a “configureDevice” RPC. Upon success, the Automation component flips the
DeviceStatus bit of the Device object to “ENABLED” and the respective ZTPDeviceState to “CREATED”
while generating relevant events. Finally, these events can be consumed by other TeraFlowSDN
components, e.g., to begin management and monitoring routines for this device. Note that if the
DeviceStatus of the newly arrived device is already ENABLED, the device is already provisioned, thus
no action is taken by the ztpAdd RPC, while a relevant warning is issued.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 136 of 180

Figure 100: Zero-Touch Provisioning of a new device into TeraFlowSDN.

Automated device update workflow

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 137 of 180

Device update requests can be issued by an operator using the ztpUpdate RPC, This RPC receives a
new candidate DeviceConfig object for a certain device as input, as shown in Figure 101. First, the
Automation component requests the respective Device object from the Context database, resulting
in a “getDevice” call to the Device component. Then, if this device is enabled, the Automation
component loops through the configuration entries of the newly retrieved object and updates the
relevant entries according to the newly fetched DeviceConfig object. Next, the updated Device object
is pushed to the Device component and stored to the Context database via a “configureDevice” RPC.
Upon success, the Automation component flips the ZTPDeviceState to “UPDATED” while generating a
relevant event. Note that, if the device to be updated is not enabled, the ztpUpdate RPC outputs a
relevant warning indicating an inability to update a disabled device.

Figure 101: Zero-Touch Update of a device into TeraFlowSDN.

Automated device deletion workflow

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 138 of 180

Device delete requests can be issued by an operator using the ztpDelete RPC as shown in Figure 102.
Upon such a request, the Automation component requests the respective Device object from the
Context database, resulting in a “getDevice” call to the Device component. Then, if this device is
enabled, the Device object is deleted from the Context database via a “deleteDevice” RPC issued to
the Device and Context components in turn. Upon success, the Automation component flips the
DeviceStatus bit of the Device object to “DISABLED” and the respective ZTPDeviceState to “DELETED”
while generating the respective events. Note that, if the device to be deleted is not enabled, the
ztpDelete RPC outputs a warning indicating an inability to delete an already disabled device.

Figure 102: Zero-Touch Deletion of a device from TeraFlowSDN.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 139 of 180

5.1.5. Evaluation

This section evaluates the three basic RPCs of the Automation component, i.e., ztpAdd, ztpUpdate,
and ztpDelete, using an actual TeraFlowSDN deployment with the Automation, SBI, and Context
components in action.

Experimental setup

This setup is deployed on the same testbed as in the case of the P4 service handler (see Section 4.2.5).
TeraFlowSDN is deployed as a Kubernetes service on a server, and no resource limits are set to the
Automation, SBI and Context components to allow stress testing.

Benchmarking procedure

To benchmark the three RPCs of the Automation component, the Grafana K6 [17] testing suite is
employed. This tool allows to emulate multiple gRPC clients that in the case of the Automation
component trigger the desired RPCs. K6 allows to pin each emulated client on a different thread, thus
invoke concurrent calls to the Automation component for stressing its behaviour under high load. To
stress test the Automation component a large number of devices is required. As this is hard to
provision using real hardware, software-based devices are employed, using the emulated device
driver plugin of the SBI component.

The following benchmarks measure the total time (in seconds) required to perform zero-touch
add/update/delete operations using an exponentially increasing number (i.e., 1, 10, 100, 500, and
800) of emulated devices. Each ztp RPC is invoked by a client deployed on a dedicated thread to ensure
concurrency. Errorbars are used to report the time in the y-axis. The central point corresponds to the
median latency, while the whiskers correspond to minimum and maximum latencies respectively.

Zero-touch device addition benchmarking

In the first experiment, the Automation, SBI, and Context components are deployed in clean state and
an exponentially increasing number of emulated devices is provisioned. This is done by calling the
CreateDevice RPC of the SBI component, which results in a Connect RPC per device by the emulated
device driver. This in turn triggers device bootstrapping, which produces an event that is captured by
the Automation component. Specifically, this event automatically invokes the ztpAdd RPC, which
undertakes the provisioning of an initial configuration to the underlying device as described by the
ztpAdd workflow in Figure 103.

Figure 103 shows the time required for the Automation component to provision an exponentially
increasing number of emulated devices. The number of devices is shown in the 𝑥𝑥-axis, while the 𝑦𝑦-
axis displays the total time to realize zero-touch provisioning for this increasing number of devices.
The clock ticks when the first RPC is issued by K6 and stops when the last RPC is concluded, which
implies that all devices are in ZTPDeviceState=CREATED. As shown in Figure 103, provisioning
configuration for a single device takes around 50ms. The median latency increases up to 12s for 800
devices. To identify the trend, we fit a function to the median latencies shown in Figure 103, which
shows a polynomial increase of the latency as follows:

Latency = 1104𝑥𝑥2 − 3630𝑥𝑥 + 2699,

where 𝑥𝑥 is the number of devices.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 140 of 180

Figure 103: Zero-Touch add benchmark using an exponentially increasing number of emulated devices.

Zero-touch device update benchmarking

In this experiment, the same number of devices is considered. This device must be already provisioned
to update a device through the ztpUpdate RPC of the Automation component. For this reason, this
experiment considers the devices pre-deployed and pre-configured. The objective is to update the
existing configuration of each device using the automated workflow of the ztpUpdate as described in
Figure 104. The clock

Figure 104 shows the time required for the Automation component to update an exponentially
increasing number of emulated devices. The number of devices is shown in the x-axis, while the y-axis
displays the total time to realize zero-touch update for this increasing number of devices. The clock
ticks when the first RPC is issued by K6 and stops when the last RPC is concluded, which implies that
all devices are in ZTPDeviceState=UPDATED. As shown in Figure 104, updating the configuration for a
single device takes around 37ms. The median latency increases up to 14.5s for 800 devices, which
makes this RPC slightly heavier than the ztpAdd. To identify the trend, we fit a function to the median
latencies shown in Figure 104, which shows a polynomial increase of the latency as follows:

Latency = 1206𝑥𝑥2 − 3415𝑥𝑥 + 2102,

where 𝑥𝑥 is the number of devices.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 141 of 180

Figure 104: Zero-Touch update benchmark using an exponentially increasing number of emulated devices.

Zero-touch device deletion benchmarking

This final experiment follows a similar set up with the update benchmark. An increasing number of
devices is pre-deployed and pre-configured, hence the goal of this experiment is to decommission
these devices using the ztpDelete RPC automatically.

Figure 105 shows the time required for the Automation component to delete an exponentially
increasing number of emulated devices. The number of devices is shown in the x-axis, while the y-axis
displays the total time to realize zero-touch deletion for this increasing number of devices. As shown
in Figure 105, decommissioning a single device takes around 46ms. The median latency increases up
to 15s for 800 devices, which is the highest compared to ztpAdd and ztpUpdate. This is because
deleting a device also TBD. To identify the trend, we fit a function to the median latencies shown in
Figure 105, which shows a polynomial increase of the latency as follows:

Latency = 1217𝑥𝑥2 − 3223𝑥𝑥 + 1830,

where 𝑥𝑥 is the number of devices.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 142 of 180

Figure 105: Zero-Touch deletion benchmark using an exponentially increasing number of emulated devices.

Summary

Despite the exponential increase of the added/updated/deleted devices, the service time of the
Automation RPCs is still polynomial. Note that to perform these RPCs, the Automation component
interacts with two other TeraFlowSDN components (SBI and Context), thus this is an integration-level
benchmark. This demonstrates that TeraFlowSDN components are carefully designed to
accommodate high loads.

5.2. Policy Management Component

Network policy may be defined as a collection of rules that dictate the behaviours of network
resources, which may include devices (physical or virtual) and functional components. Within the
TeraFlow project, we use policy rules for both:

• high-level objectives, which are often referred to as “intent” statements due to the declarative
nature of the request;

• low-level objectives, applied to specific devices or when making network resource assignment
decisions. With often use imperative statements when processing “network policy”.

The TeraFlow Policy Management component uses “event-driven management” [16]; this approach
provides a valuable method to monitor state change of managed objects and resources and enable
automatic triggering of responses to events based on an established set of rules. The TeraFlow event-
driven policy provides rapid autonomic responses to specific conditions, enabling self-management
behaviours, such as self-configuration, self-healing, self-optimization, and self-protection. The
TeraFlow Policy Management Component utilises an emerging technical technique called “Event
Condition Action” (ECA) to provide event-driven benefits [16]. ECA Policy enables actions to be
automatically triggered based on when certain events in the network occur while certain conditions
hold. Thus, ECA facilitates limited logic to be delegated to network devices and functional components
for automating specific required behaviour.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 143 of 180

5.2.1. New Features/Extensions

This section summarizes the new features added to the Policy Management component during the
second year of the TeraFlow EU project, as part of the TeraFlow release v2. These features are added
atop the TeraFlow release v1, which was announced in March 2022.

• Drastically revised ECA-based policy model (as compared to TeraFlow release v1) with a basic
policy rule object that specializes to (i) service-oriented policy rules (network-wide policies
spanning across a number of devices that a service might traverse) and (ii) device-specific
policy rules (device-level policies);

o These changes introduced additional service-level and device-level policy RPCs.
Section 5.2.3 provides further details about all Policy Management RPCs.

• Implementation of all eight (8) Policy Management RPCs. In the TeraFlow release v1, only a
draft Policy Management protobuf was implemented, with a “skeleton” Policy Management
component. In this second TeraFlow release, a complete Policy Management implementation
is provided;

• Unit and integration tests to support the TeraFlow uses cases.

5.2.2. Final Design

The goal of the Policy Management component, also abbreviated as Policy component, is to translate
a network operator’s high-level network policy statements into a correct set of low-level instructions
that realize this policy across the various network elements. To meet this objective, the Policy
component is designed according to Figure 106.

Figure 106: Overview of the final design of the TeraFlowSDN Policy component.

As shown in Figure 106, the Policy Management component mainly interacts with the Context,
Monitoring, Device, and Service components. This is done via internal classes of the Policy
Management component that implement (i) gRPC clients towards the Context, Monitoring, Device,
and Service components, acting as service consumers of external components’ services and (ii) an
overlay gateway layer that interacts with all these services through the gRPC clients. Specifically:

• The ContextGateway interface communicates with a Context Service gRPC client to invoke key
RPC functions described in context.proto file;

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 144 of 180

• The ContextService interface implements the GetService(), GetDevice(), GetPolicyRule(),
SetPolicyRule(), and DeletePolicyRule() methods by communicating with a Context gRPC client
through the use of ContextGateway interface;

• The MonitoringGateway interface that communicates with a Monitoring service gRPC client
to invoke key RPC functions described in monitoring.proto file;

• The MonitoringService interface that implements the MonitorKpi(), SetKpiAlarm(), and
GetAlarmResponseStream() methods by communicating with a Monitoring gRPC client
through the use of the MonitoringGateway interface;

• The DeviceGateway interface communicates with a Device Service gRPC client to invoke key
RPC functions described in device.proto file;

• The DeviceService interface implements the configureDevice() method by communicating
with a Device gRPC client through the use of DeviceGateway interface;

• The ServiceGateway interface that communicates with a Service service gRPC client to invoke
key RPC functions described in service.proto file;

• The ServiceService interface implements the UpdateService() method by communicating with
a Service gRPC client through the use of the ServiceGateway interface.

The Policy Management component implements an internal Policy Service (see Figure 106) of similar
architecture, which consumes the Context, Monitoring, Device, and Service services above to offer
Policy Management services as follows:

• The PolicyGateway interface implements all the RPC functions that are described in
policy.proto file. Section 5.2.3 provides details about these RPCs;

• The PolicyService interface that implements the Policy RPC methods by communicating with
a Monitoring gRPC client, a Context gRPC client, a Service gRPC client, and a Device gRPC client
through the MonitoringService, ContextService, ServiceService, and DeviceService interfaces,
respectively.

Basic policy rule format

A basic policy rule contains the following set of information, as introduced in the policy.proto file and
shown in Table 34.

Table 34: Key elements of a basic policy rule object.

Basic policy rule element Description
Policy rule ID A unique policy rule ID in string format.
Policy rule state The state of this policy rule in the policy component’s internal state

machine:
• POLICY_UNDEFINED
• POLICY_FAILED
• POLICY_INSERTED
• POLICY_VALIDATED
• POLICY_PROVISIONED
• POLICY_ACTIVE
• POLICY_ENFORCED
• POLICY_INEFFECTIVE
• POLICY_EFFECTIVE
• POLICY_UPDATED
• POLICY_REMOVED

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 145 of 180

Policy rule priority The priority of a policy rule encoded as a non-negative integer. The
lower the number the higher the priority of the rule.

List of policy rule
conditions

A list of policy rule conditions encoded in the policy_condition.proto.
Each condition is a triplete of:

• Monitoring.KPI ID
• Numerical Operator (=, ≠, <, ≤, >, ≥)
• Monitoring. KPI value

Boolean operator for
policy rule conditions

Boolean operator between multiple policy rule conditions.
Supported operators are AND or OR.

List of policy rule actions A list of policy rule actions encoded in the policy_action.proto. Each
action is a tuple of (i) a predefined set of action operations followed
by (ii) a corresponding list of action parameters. For example,
service-related actions act upon a service’s configuration rules or
constraints, while device-related actions act upon device
parameters, such as device status, port(s) status, etc.

Service and device-level policy rules

This basic policy rule is inherited by two other types of policy rules as follows:

• PolicyRuleService inherits all attributes of a basic policy rule associated with a particular
service ID and optionally, a list of devices through which the service traverses. If no devices
are provided, all devices being traversed by the service are assumed;

• PolicyRuleDevice inherits all attributes of a basic policy rule associated with a list of devices
on which the policy rule focuses.

Core logic: The Policy service implements the internal finite state machine depicted in Figure 107.
Operators can add a new policy to the TeraFlowSDN ecosystem by calling the policyAdd RPC (either
for service-based policies or for device-level policies) as shown on the top left part in Figure 107. At
this stage, the state of a newly arriving policy is marked as INSERTED and the input policy is stored in
the Context database through a “SetPolicyRule” RPC. Upon successfully parsing and validating the
content of the requested policy, the input policy transitions to the VALIDATED state. In the case that
the validation process fails, e.g., due to an unsupported policy condition (i.e., KPI) or an invalid
service/device ID being provided, the state machine transitions to the FAILED state, which results in a
corresponding failure of the policyAdd RPC.

Next, an already validated policy rule needs to be provisioned through an interaction with the
Monitoring component. Specifically, an input policy rule contains a list of policy rule conditions in the
form of AND-separated or OR-separated “KPI_ID NUMERICAL_OPERATOR KPI_Value” patterns. For
instance, a policy rule condition for a certain service could be “PacketLoss > 0.2”. Such a condition
instructs the Policy component to (i) Monitor each KPI in a list of KPIs, (ii) set a new KPI alarm from a
list of KPIs, and (iii) get a stream of KPI alarm responses, when a certain registered KPI alarm is
triggered. With this set of RPCs issued to the Monitoring component, a policy rule can be successfully
subscribed for conditional alarms (or events), thus transition the state machine to the PROVISIONED
state (see Figure 107).

Once a set of KPIs are registered to the Monitoring component, the Policy component waits for
potential alarms to be triggered. Once such an alarm is thrown, a corresponding policy rule transitions
to the ACTIVE state. This is the time for the Policy component to apply the (list of) action(s) associated
with the policy, for which the alarm is thrown. Upon the enforcement of the action(s), which can be

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 146 of 180

done either at the level of a service or a (set of) device(s), the policy rule transitions to the ENFORCED
state as shown in Figure 107. At this state, it is critical for the network operator to know whether the
applied action(s) has been effective or not. To do so, the Policy component offers an internal policy
assessment loop that monitors each policy rule’s KPIs for a configurable period after the enforcement
of the policy actions. If the monitored KPIs keep on reporting alarms past the enforcement of the
policy actions, the policy rule transitions to the INEFFECTIVE state. Other relevant TeraFlowSDN
components, such as the WebUI, could register for policy events with such a state, to notify the
network operators for policy rules that require attention. In this case, potential remedy actions could
be triggered by network operators, by updating ineffective policies (e.g., with more effective actions)
or deleting ineffective policy rules as shown in Figure 107. In the case of no further alarms triggered
after the enforcement of policy actions, the policy state is marked as EFFECTIVE.

Figure 107: Internal state machine of the TeraFlowSDN Policy component.

5.2.3. Final Interfaces

The Policy Management component offers two interfaces. The first interface, titled “Service API” in
Figure 106, exposes basic policy management functions to the rest of the TeraFlowSDN components.
The second interface, titled “Events API” in Figure 106 allows the Policy Management component to
register, to receive, thus react upon relevant events from key TeraFlowSDN components. Both
interfaces are described in the rest of this section.

Policy Management Service API

Table 35 displays an overview of the RPC methods exposed by the Policy Management component.
Specifically, the main RPC methods provide a way to (i) add a new policy, either at the service level
(i.e., policyAddService) or at the device level (i.e., policyAddDevice), (ii) update an already provisioned
policy, either at the service level (i.e., policyUpdateService) or at the device level (i.e.,
policyUpdateDevice), and (iii) remove a provisioned (i.e., policyDelete). In addition to those key
functions, the Policy Management component also exposes three read-only RPCs that allow other
TeraFlowSDN components to access the current state of policies. Specifically, the Policy Management
component allows querying for service-level (GetPolicyService) and device-level (GetPolicyDevice)
policies by their ID or querying the list of policies associated with a specific service ID
(GetPolicyByServiceId).

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 147 of 180

Table 35: Service interface definition for the Policy Management component.

RPC Method Name Parameters Results
PolicyAddService PolicyRuleService PolicyRuleState
PoicyAddDevice PolicyRuleDevice PolicyRuleState
PolicyUpdateService PolicyRuleService PolicyRuleState
PoicyUpdateDevice PolicyRuleDevice PolicyRuleState
PoicyDelete PolicyRuleId PolicyRuleState
GetPolicyService
GetPolicyDevice
GetPolicyByServiceId

PolicyRuleId
PolicyRuleId
context.ServiceId

PolicyRuleService
PolicyRuleDevice
PolicyRuleServiceList

Policy Management Events API

Apart from the main Policy Management services, the Policy component exploits a publish-subscribe
TeraFlowSDN mechanism to dynamically associate policy conditions with relevant events that require
immediate actions. Integrating the Policy component with the Monitoring component has made it
possible to associate policy conditions (i.e., statements on the value of KPIs monitored by the
Monitoring component) with alarms using the alarm subsystem of the Monitoring component. When
a registered KPI value exceeds some predefined thresholds, the Monitoring component uses the
Events API channel of the TeraFlowSDN controller to notify subscribed components (e.g., the Policy
Management component) about the exceeded KPI threshold(s). This way, the Policy Management
component uses an asynchronous mechanism to trigger policy actions upon the received alarms. In a
similar way, when a policy rule transitions to a new state (e.g., ACTIVE, EFFECTIVE/INEFFECTIVE, etc.)
other TeraFlowSDN component could subscribe to the Context component, waiting for such events to
be raised, thus inform the network operator through the WebUI in a complete dynamic manner.

5.2.4. Final Operational Workflows

In this section, a detailed sequence diagram is provided for the most important RPCs of the Policy
Managment component. These diagrams highlight both the interaction of the Policy Management
component with other TeraFlowSDN components or external entities, as well as the prominent effect
of the ECA model in the design of the Policy Management component.

Service-level policy creation workflow

To apply a new service-level policy to the network, a network operator needs to trigger the
policyAddService RPC of the Policy Management component as shown in Figure 108. This can be done
via the Slice component, when a new service is created, and the network operator wishes to associate
this service with a new policy. The policyAddService call will provide the Policy Management
component with a Policy rule object which contains several internal objects denoting the service
associated with the policy rule, a set of conditions for this rule to apply, and a set of actions to be
enforced once the condition(s) is(are) met. First, the Policy Management component parses the
received policy and validates that the policy rule object refers to a valid service ID and a valid set of
KPIs and actions. Then, the policy rule is stored to the Context database and the policy rule is marked
as VALIDATED. At this point, Policy returns a successful response to the Slice component (which
cascades back to the WebUI and OSS/BSS), while internally the Policy component begins the
provisioning of the policy rule as follows.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 148 of 180

Figure 108: Service-level policy creation through the TeraFlowSDN policyAddService RPC.

Service-level policy subscription workflow

Next, the input policy rule conditions are parsed to identify which KPIs need to be requested from the
Monitoring component as shown in Figure 109. This entails the (i) SetKPI RPC to create a new KPI in
case it does not already exist, (ii) MonitorKPI RPC to instruct the Monitoring component to begin
retrieving data for this KPI, (iii) SetKPIAlarm RPC to register to events when the KPI exceeds some
range of values or specific threshold, and (iv) GetAlarmResponse Stream RPC to receive the generated
alarms when the KPI condition will be met. Once all these RPCs succeed, the policy rule transitions to
the PROVISIONED state.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 149 of 180

Figure 109: Service-level policy subscription.

Service-level policy triggering and enforcement workflow

At a later stage, an asynchronous event will be generated when the KPI meets the requested
condition(s) as shown in Figure 110. This event further transitions the policy rule to the ACTIVE state,
as the Policy Management component is now ready to apply the corresponding policy actions. To do
so, the affected service is first retrieved from the Context component and its local configuration is
updated by applying the list of policy actions. To enforce the updates, the UpdateService RPC is called,
resulting in Service component interactions with the various underlying devices through the Device
component. At this point, the policy rule transitions to the ENFORCED state.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 150 of 180

Figure 110: Service-level policy triggering and enforcement.

Device-level policy creation workflow

To apply a new device-level policy to the network, a network operator needs to trigger the
policyAddDevice RPC of the Policy Management component as shown in Figure 111. The key
difference between device-level and service-level policy creation is the caller. The device-level policy
creation is triggered directly by the operator (or a UI), while the Slice component calls the service-level
policy creation after the creation of a service for the target policy. Otherwise, Figure 110 and Figure
111 present an identical workflow for creating and validating service-level and device-level policies.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 151 of 180

Figure 111: Device-level policy creation.

Device-level policy subscription workflow

To subscribe a device-level policy to the Monitoring component, a similar workflow is followed as in
the case of the service-level policy subscription shown in Figure 112.

Device-level policy triggering and enforcement workflow

Device-level policies are enforced differently than service-level policies as shown in Figure 112.
Specifically, the device-level policy enforcement method loops across a list of devices, fetches each
device from the Context component, and applies a (set of) action(s) to the local device object. Once
this is done, the updated device configuration is communicated to the Device component through a
configureDevice RPC and the policy is considered as ENFORCED.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 152 of 180

Figure 112: Device-level policy triggering and enforcement.

Policy assessment workflow

Once a service-level or a device-level policy is enforced as shown in Figure X and Figure Y, respectively,
an internal policy mechanism is invoked to assess whether the enforced action was effective or not
(see Figure 113). In the case that no alarms are raised after the enforcement of the policy action, the
policy rule is marked as EFFECTIVE. Otherwise, the policy rule is marked as INEFFECTIVE and its state
is stored in the Context database so that other components could register for alarms when such a
policy state is stored in the database. This gives TeraFlowSDN an efficient way of asynchronously
informing the network operator immediately after a policy rule state change is flipped. Ineffective

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 153 of 180

policies will cause WebUI alerts that an operator can immediately observe and act upon, either
through a policy update or policy delete operation as follows.

Figure 113: Policy assessment.

Generic policy update workflow (Both for service-level and device-level policies)

To update a policy, the policyUpdateService or policyUpdateDevice RPCs are similarly called by the
network operator. As in the case of the policyAdd RPCs, first the validation of the updated policy rule
is required to return a status to the caller. Then, the update concerns either the conditional part of
the policy or the action part of the policy, or even both. For each condition in the updated policy rule,
if the corresponding KPI is not already registered by the previous policyAdd RPC, the same set of RPCs
are issued to the Monitoring component (I.e., SetKPI, MonitorKPI, SetKPIAlarm, and
GetAlarmResponseStream). Otherwise, the values of already registered KPIs are checked and if a KPI
has updated values, a SetKPIAlarm is re-invoked to update the KPI thresholds. The same process is
repeated for the policy actions to update the list of actions according to the content of the update
policy request. At this point the policy transitions to the UPDATED state and an alarm is expected soon

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 154 of 180

after the (updated) policy KPIs trigger an alarm. In this case, the exact same workflow is followed as
in the policyAddService RPC.

Figure 114: Policy update for service-level and device-level policies.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 155 of 180

Generic policy deletion workflow (Both for service-level and device-level policies)

To delete a policy rule, e.g., as part of the deletion of a slice, network operators can issue a
policyDelete RPC as shown in Figure Y. First the Policy Management component validates that the
deletion request refers to a valid policy ID. Then, a communication with the Monitoring component is
initiated to delete the KPI alarms associated to the policy rule. This ensures that no future alarms will
be received from the Monitoring component about this policy. Next, the policy rule is deleted from
the Context database and a relevant event is generated to notify other components about the
successful deletion of the policy rule. This event also could be captured by the WebUI component and
visualized to the network operator through a pop-up banner or colour highlights.

Figure 115: Policy deletion for service-level and device-level policies.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 156 of 180

5.2.5. Evaluation

This section evaluates three basic RPCs of the Policy Management component, i.e., policyAddService,
policyUpdateService, and policyDelete, using an actual TeraFlowSDN deployment with the Policy,
Service, and Context components in action.

Experimental setup

The experimental setup for this evaluation is identical to the one used for the Automation component
in Section 5.1.5. TeraFlowSDN is deployed as a Kubernetes service on the test server, and no resource
limits are set to the Policy and Context components to allow stress testing.

Benchmarking procedure

To benchmark the three RPCs of the Policy component, the Grafana K6 [17] testing suite is employed
as in the case of the Automation component in Section 5.1.5. This tool allows emulating multiple gRPC
clients that in the case of the Policy component trigger the target RPCs. K6 allows pinning of each
emulated client on a different thread, thus invoke concurrent calls to the Policy component for
stressing its behaviour under high load. To stress-test policy add/update/remove operations only a
basic integration with the Context component is required. This is because, the Policy component is
designed with an asynchronous processing model in mind. Specifically, when an operator requires to
add/update/delete a policy, the Policy component validates the inputs and immediately returns a
status depending on whether the requested policy object (for add and update operations) or policy ID
(for the delete operation) was valid or not. This allows non-blocking requests to the Policy component,
while internal threads can be allocated to process the incoming requested as needed. This is also
reflected by the workflow diagrams introduced in Section 5.2.4.

The following benchmarks measure the total time (in seconds) required to perform policy
add/update/delete operations using an exponentially increasing number (i.e., 1, 10, 100, 500, and
800) of incoming requests. Each RPC is invoked by a client deployed on a dedicated thread to ensure
concurrency. Errorbars are used to report the time in the y-axis. The central point corresponds to the
median time, while the whiskers correspond to minimum and maximum time respectively. To test the
target policy RPCs, an example service needs to be set up. We used an emulated OLS connectivity
service atop emulated packet routers as an example. The benchmark creates an increasing number of
policy rules using the policy rule template shown in Table 36 as a basis. This rule implies that a TestKPI
needs to be created and associated with the target service. When the TestKPI is False, this policy rule
will trigger no action. Note that this benchmark does not aim to test the runtime operations of a policy
(i.e., how a policy action is enforced), but rather quantify the overhead of requesting an increasing
number of policies from TeraFlowSDN. For this reason, the action part of the policy rule has no effect
on this benchmark.

Table 36: Policy rule used for the benchmarking of the service-based policy add/update/delete operations.

Policy attribute Value
Service ID 6942d780-cfa9-4dea-a946-a8a0b3f7eab2
Initial policy rule state UNDEFINED
Policy rule priority 0
Policy rule condition list TestKPI = False (created for the needs of this benchmark)
Boolean policy rule operator UNDEFINED (not used as the condition list has a single item)
Policy rule action NO_ACTION

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 157 of 180

Service-based policy addition benchmark

The Policy, Service, and Context components are deployed as a clean state in the first experiment. An
example L2NM service is created, to which the policies under test refer. Then, the benchmark employs
an exponentially increasing number of incoming policy add requests. This is done by calling the
policyAddService RPC of the Policy component with the example policy rule shown n Figure X as an
input. To test multiple rules for the same service, the benchmark automatically updates the policy rule
ID to create an increasing number of rules for the same service. Figure 116 shows the total amount of
time (y-axis in seconds) to accommodate an increasing number of rules (i.e., 1 to 800 in x-axis). The
clock ticks when the first RPC is issued by K6 and stops when the last RPC is concluded, which implies
that all policies are provisioned. As shown in Figure X, inserting a single policy takes around 48ms. The
median latency increases up to 10s for 800 policies. To identify the trend, we fit a function to the
median latencies shown in Figure 116, which shows a polynomial increase of the latency as follows:

Latency = 798𝑥𝑥2 − 2166𝑥𝑥 + 1303

where x is the number of added policies.

Figure 116: Service-based policy add benchmark using an exponentially increasing number of incoming policy add requests.

Service-based policy update benchmark

In the second experiment, an increasing number of policies is assumed to be pre-provisioned. The
objective of this benchmark is to quantify how much time a network operator requires to update this
increasing number of available policies using the policyUpdateService RPC. Figure 117 shows the total
amount of time (y-axis in seconds) to accommodate an increasing number of policy rule updates (i.e.,
1 to 800 in x-axis). Updating a single policy takes around 22ms, which is half the time to insert it. The
median latency increases up to 561ms for 800 policies, which renders policy updates at least an order
of magnitude faster than policy insertions at scale. To identify the trend, we fit a function to the
median latencies shown in Figure 117, which shows a polynomial increase of the latency as follows:

Latency = 39𝑥𝑥2 − 95𝑥𝑥 + 71,

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 158 of 180

where x is the number of updated policies.

The polynomial coefficients justify our reasoning as the slope of the polynomial function in the case
of the policy update RPC is less steep than the slope of the policy add RPC.

Figure 117: Service-based policy update benchmark using an exponentially increasing number of incoming policy update
requests.

Policy deletion benchmark

Finally, an operator should be able to delete available policies. As in the case of the update benchmark,
this benchmark assumes a number of pre-provisioned policies which the operator deletes using the
policyDelete RPC. This RPC can delete both service and device-level policies as the only input to this
RPC is the policy ID to be deleted. Figure 118 shows the total amount of time (y-axis in seconds) to
remove an increasing number of policy rules (i.e., 1 to 800 in x-axis). Deleting a single policy takes
around 23ms, which is similar to the policy update case. The median latency increases up to 480ms
for 800 policies, which makes policy deletion slightly faster than policy updates. To identify the trend,
we fit a function to the median latencies shown in Figure 118, which shows a polynomial increase of
the latency as follows:

Latency = 24𝑥𝑥2 − 14𝑥𝑥 − 7

where x is the number of deleted policies.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 159 of 180

Figure 118: Generic policy benchmark using an exponentially increasing number of incoming policy update requests.

Summary

Policy add operations introduce some reasonable overhead that a network operator takes once off,
when creating those policies. On-the-fly policy updates and fast, which suggests that network
operators should rather update a policy rather than delete it and create a new one from scratch.
Nevertheless, all policy RPCs are control plane operations that are not expected to be heavily utilized
by network operators. However, it is useful to quantify the overhead of issuing policy operations. In a
large network with lots of dynamic traffic pattern updates, a network operator might need to
introduce frequent policy changes, which TeraFlowSDN appears to provision rather quickly.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 160 of 180

6. Transport Network Slicing and Multi-tenancy
This section provides the design overview, interfaces, operational workflows, and evaluation results
of the core TeraFlowSDN components of T3.4, i.e., the Slice Management component (see Section
6.1).

6.1. Slice Management Component

Network Slices provide the necessary connectivity with a set of specific commitments of network
resources between a number of endpoints over a shared underlay network [22]. In this context,
transport network slices are provided to support connectivity with a dedicated Service Level
Agreement (SLA), which shall be mapped as a technology abstract intent, regardless of the underlying
implementation (e.g., L2VPN or L3VPN). Thus, transport network slices once deployed shall be
monitored and enforced, in terms of the established SLA constraints/requirements. The current IETF
Network Slice Service YANG Model allows the request for the necessary connectivity constraints [23].

We define a slice group as the entity consisting of one or multiple slices with a unique group identifier.
One slice belongs to one and only one slice group. Slice grouping requires a mechanism to map a slice
into its slice group, also known as slice template or slice blueprint. From our transport network
perspective, slice grouping can be based on the mapping of slice SLA requirements to the existing set
of slice groups. Thus, slice grouping introduces the need for a clustering algorithm to find service
optimization while preserving the slice SLA.

6.1.1. New Features/Extensions

• Initial version of Slice Management component;
• Alignment with NBI component;
• Slice Grouping.

6.1.2. Final Design

The architectural design of the slice component, shown in Figure is quite simple. It just includes the
gRPC service interface and a servicer module implementing the logic of the different methods
described in section 6.1.3.

Figure 119 Architecture of the Slice component

Figure 120 provides an example of a slice request based on [23]. The requested slice includes a service-
id along with a requested Service Level Objective (SLO) and Service Level Expectation (SLE) policy. By
doing so, several metrics can be included, for example SLO ``one way minimum guaranteed
bandwidth'' and SLO ``guaranteed availability''. Figure 120 shows an example of slice request based
on [23] data model.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 161 of 180

Figure 120 Slice JSON request based on [Wu22]

6.1.3. Final Interfaces

Table 37 displays an overview of the RPC methods exposed by the Slice component to manage
Transport Network Slices (“slices” for short). Specifically, the RPC methods exposed are:

• CreateSlice: creates a new slice. As it happens with the Service component, it just instantiates
the slice in the Context database and retrieves the identifier;

• UpdateSlice: enables to manipulate the slice by managing the endpoints, constraints, and
configuration rules, and implementing the appropriate changes through the Service and
Device components;

• DeleteSlice: removes an existing slice de-configuring the appropriate supporting services and
device configuration rules;

• OrderSliceWithSLA: similar to UpdateSlice, but explicitly demands to take into consideration
the provided SLAs definitions. If slice with SLA already exists, returns the slice; otherwise,
creates the slice;

• RunSliceGrouping: triggers a procedure to optimize the underlying services and re-maps them
to the slices matching the requirements.

Table 37: Service interface definition for the Slice component

RPC Method Name Parameters Results
CreateSlice context.Slice context.SliceId
UpdateSlice context.Slice context.SliceId
DeleteSlice context.SliceId ---
OrderSliceWithSLA context.Slice context.SliceId
RunSliceGrouping --- ---

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 162 of 180

6.1.4. Final Operational Workflows

Figure 121 Workflow to provide slice grouping

The workflow depicted in Figure 121 provides slice grouping based on slice requests that demand
randomly distributed service availability and allocated bandwidth. We define a slice group as an entity
consisting of one or multiple slices with a unique group identifier. One slice belongs to one and only
one slice group. Slice grouping requires a mechanism to map a slice into its slice group, also known as
a slice template or slice blueprint. From our transport network perspective, slice grouping can be
based on mapping slice SLA requirements to the existing set of slice groups. Thus, slice grouping
introduces the need for a clustering algorithm to find service optimization while preserving the slice
SLA.

Step 1 shows the request for the transport network slice, received from the NorthBound Interface
(NBI) via a RESTconf interface. Such a request is then translated/mapped into the used TeraFlowSDN
protocol buffer and sent to the Slice component for its processing (Step 2). Finally, in step 3, the slice
grouping algorithm is triggered, detailed below.

The outcome of the slice grouping algorithm can result in two options:

• the slice request is mapped to an existing slice group, or;
• a new slice group might be required. In the first case, the slice resources are related to a

current/existing slice group and, using Steps 8 and 9, it is notifed the allocated resources for
the request to the Operation Support System (OSS) and Business Support System (BSS).

In case new resources need to be allocated, the Slice component requests the necessary connectivity
services to the Service component. The resources are then allocated following the necessary SDN
orchestration mechanisms (steps 4-7). The underlying resource orchestration workflow applied by
TeraFlowSDN is detailed in D2.2.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 163 of 180

6.1.5. Evaluation

Experimental setup

We used the same setup (server and micro-service deployment) described for the Emulated Device
Driver Evaluation (see section 4.1.6.1).

PERFORMANCE NOTE: Current activities involve integrating a new implementation of the Context
component based on CockroachDB, a distributed, scalable, and high-performance relational database.
The current implementation is based on a database not supporting concurrency and with limited
performance, which results in poor performance results. Given that Slice relies on Service and Device
that, in turn highly rely on Context component, the performance reported in this section should be
considered preliminary and for functional evaluation only. We expect to achieve better performance
after finishing this integration. The final results will be released in deliverable D5.3 [8].

The considered metric for assessing the Slice component is the delay incurred by the component to
setup/teardown the transport network slices through the Service and Device components using the
Emulated device driver and the L2NM/L3NM Emulated service handlers. This includes the dispatching
time of the requests as well as the overheads introduced by the Service, Device and Context
components. The request generation is similar to that for the Emulated device driver evaluation (see
section 4.1.6.1); however, to produce the CDF of the Slice component delay, the requests are
generated uniformly selecting between L2 and L3 network slices. The endpoints of every request are
chosen randomly from the transport topology in the previous section. Each request is generated with
a Poisson statistical model whose inter-arrival time is set to 200ms while the duration of the
service/slice is modelled exponentially with a holding time of 10s.

In Figure 122, it is shown the CDF of the Slice component latency for the generated requests. It is
worth noting that each request implies several rule retrievals, configurations and/or deletions. We
observe that the requests changing the configuration takes between 1 and 10 seconds. As stated
beforehand, we are currently on the integration phase of CockroachDB, a distributed and scalable
database, in the Context component. We expect to achieve much better performance after finishing
this integration. The final results will be reported in D5.3 [8].

Figure 122: CDF for the Slice component Delay.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 164 of 180

Slice Grouping Evaluation

To support the slice grouping based on the requested SLO/SLE, we use the K-Means clustering algorithm. This is an
unsupervised machine learning algorithm, which groups data into a determined (i.e., K) number of clusters. These number
of clusters is defined by the user and, K-means groups the data into that specific number of clusters. This is the reason why

a technique is needed to determine the optimal number of clusters for every specific case.

Figure 123 shows the application of the Elbow method to select the number of clusters on the received
requests. We have run K-means algorithm for a K value ranging from 1 to 10. For each result, we have
computed the sum of the squared distances from each point to its assigned center. These plotted
values allow us determining the best value of K (i.e., 2 clusters in the proposed demonstration). Finally,
Figure 124 plots the received transport slice requests and the clusters to which they are related.

Figure 123 Number of clusters convergence after K-means application

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 165 of 180

Figure 124 Example of slices grouped in two clusters

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 166 of 180

7. Conclusions
This deliverable serves as a reference document for the design, interface specification, workflows, and
evaluation of core TeraFlowSDN components, touching upon important areas of modern network
operating systems, including (i) scalable high-performance SDN control plane, (ii) heterogeneous SDN
hardware integration, (iii) service and OS lifecycle automation, and (iv) network slice management.

The documented components are engineered as parts of a fully disaggregated cloud-native network
operating system to address the above objectives. The source code, mechanics, documentation, and
installation guidelines of the core TeraFlowSDN components are provided in MS3.3 [3]. The intention
of this document was to:

- provide additional context on the formal description and architecture of each component
through the “Final Design” section;

- document the exposed services per component (i.e., “Final Interfaces” section);
- highlight the interactions between different TeraFlowSDN components or with external

entities (“Final Workflows” section);
- evaluate basic component features in terms of performance and/or scalability (“Evaluation”

section).

The developments for the reported components are part of the second TeraFlowSDN release, which
will be the basis for the experimentation and validation activities in the context of WP5.

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 167 of 180

8. ANNEX: XML templates
In this Annex are the XML templates used in Section 4.1.3.4.1.2 Data Templates and XML templates.

8.1. L2VPN

1. Create L2-VPN network-instance

2. Configure interfaces/subinterfaces L2 parameters

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 168 of 180

3. Add interfaces (endpoint) to L2-VPN network instance

4. Add virtual circuits (point-to-point, bi-directional pseudo-wire interconnection) to L2-VPN
network instance

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 169 of 180

8.2. L3VPN

o Create L3-VPN network-instance

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 170 of 180

o Define routing protocols used within L3-VPN network instance

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 171 of 180

o Configure interfaces/subinterfaces L3 parameters

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 172 of 180

o Add interfaces (endpoint) to L3-VPN network instance

o Create BGP Routing Policies Import/Export for a L3-VPN
o <edit-config> create a routing-policy

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 173 of 180

o <edit-config> create BGP match conditions and action

o Apply BGP Import/export Policy (Route Target) to L3-VPN network instance

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 174 of 180

o Create protocol redistribution policies within a L3-VPN network instance

8.3. ACL

o Create ACL-SET

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 175 of 180

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 176 of 180

o Add ACL-ENTRY to ACL-SET (Same template as Create ACL_SET)
o Associate the ACL to an interface

[1] Ingress

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 177 of 180

[2] Egress

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 178 of 180

8.4. Inventary

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 179 of 180

References
[1] H2020 EU TeraFlow project, “MS3.1: Study of technical aspects of relevant SDN, Cloud-native and

SDO solutions “, April 2021.

[2] H2020 EU TeraFlow project, “MS3.2: Code freeze for TeraFlow OS components (v1): Context
Management, Monitoring, Auto Scaling, Load balancing, L0/L3 integration and Device
Management, Automation and Policy Management, Slice Management “, October 2021.

[3] H2020 EU TeraFlow project, “MS3.3: Code freeze for TeraFlow OS release components (v2):
Context Management, Monitoring, Auto Scaling, Load balancing, L0/L3 integration and Device
Management, Automation and Policy Management, Slice Management “, September 2022.

[4] H2020 EU TeraFlow project, “D2.2: Final requirements, architecture design, business models and
data models”, Dec. 2022.

[5] H2020 EU TeraFlow project, “D3.1: Preliminary Evaluation of Life-cycle Automation and High
Performance SDN Components”, Dec. 2021.

[6] H2020 EU TeraFlow project, “D4.2: Final evaluation of TeraFlow security and B5G network
integration”, Dec 2022.

[7] H2020 EU TeraFlow project, “D5.2: Implementation of pilots and first evaluation”, Dec 2022.

[8] H2020 EU TeraFlow project, “D5.3: Final demonstrators and evaluation report”, June 2023.

[9] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford,
Scott Shenker, and Jonathan Turner. 2008. OpenFlow: enabling innovation in campus networks.
SIGCOMM Comput. Commun. Rev. 38, 2 (April 2008), 69–74. DOI:
https://doi.org/10.1145/1355734.1355746

[10] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford, Cole
Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David Walker. 2014. P4:
programming protocol-independent packet processors. SIGCOMM Comput. Commun. Rev. 44, 3
(July 2014), 87–95. DOI: https://doi.org/10.1145/2656877.2656890

[11] Open Networking Foundation (ONF): https://opennetworking.org/

[12] ONF Stratum OS: https://opennetworking.org/stratum/

[13] ONF Open Network Operating System (ONOS): https://opennetworking.org/onos/

[14] The P4.org Working Groups, Available: https://p4.org/working-groups/

[15] The P4.org Applications Working Group, Contributions from Alibaba, Arista, CableLabs, Cisco
Systems, Dell, Intel, Marvell, Netronome, VMware, “In-band Network Telemetry (INT) Dataplane
Specification”, version 2.1, November 11, 2020, Available: https://p4.org/p4-
spec/docs/INT_v2_1.pdf

[16] Qin Wu, Igor Bryskin, Henk Birkholz, Xufeng Liu, Benoit Claise, "A YANG Data model for ECA
Policy Management", IEFT draft NETMOD Working Group, February 19, 2021. Work in progress.
Available from: https://datatracker.ietf.org/doc/html/draft-ietf-netmod-eca-policy

[17] Grafana K6: Load testing for engineering teams, Available: https://k6.io/
[18] CockroachDB, https://github.com/cockroachdb/cockroach. Accessed: 28/11/2022.
[19] S. Orlowski, M. Pioro, A. Tomaszewski, and R. Wessaly, “SNDlib 1.0–Survivable Network Design

Library,” in Proceedings of the 3rd International Network Optimization Conference (INOC 2007),
Spa, Belgium, April 2007, http://sndlib.zib.de, extended version accepted in Networks, 2009.

https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/2656877.2656890
https://opennetworking.org/
https://opennetworking.org/stratum/
https://opennetworking.org/onos/
https://p4.org/working-groups/
https://p4.org/p4-spec/docs/INT_v2_1.pdf
https://p4.org/p4-spec/docs/INT_v2_1.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-eca-policy-01.
https://k6.io/
https://github.com/cockroachdb/cockroach
http://sndlib.zib.de/

D3.2 Final Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 180 of 180

Available: http://www.zib.de/orlowski/Paper/OrlowskiPioroTomaszewskiWessaely2007-SNDlib-
INOC.pdf.gz

[20] Facebook Open Source, “https://facebook.github.io/prophet/,” Online, accessed in October 7,
2022.

[21] A. Alsharef, K. Aggarwal, M. Kumar, A. Mishra et al., “Review of ml and automl solutions to
forecast time-series data,” Archives of Computational Methods in Engineering, pp. 1–15, 2022

[22] A. Farrel, et. al, “Framework for IETF Network Slices,” IETF, draft-ietf-teas-ietf-network-slices-16,
2022.

[23] B. Wu, et. al, “IETF Network Slice Service YANG Model,” IETF, draft-ietf-teas-ietf-network-slice-
nbi-yang-03, 2022.

[24] Internet Engineering Task Force (IETF) RFC 6241, “Network Configuration Protocol (NETCONF),”
2011. [Online]. Available: https://datatracker.ietf.org/doc/html/rfc6241

[25] OpenConfig: Vendor-neutral, model-driven network management designed by users, [Online]
Available: https://www.openconfig.net/

[26] QuestDB, https://github.com/questdb/questdb. Accessed: 23/12/2022

http://www.zib.de/orlowski/Paper/OrlowskiPioroTomaszewskiWessaely2007-SNDlib-INOC.pdf.gz
http://www.zib.de/orlowski/Paper/OrlowskiPioroTomaszewskiWessaely2007-SNDlib-INOC.pdf.gz
https://datatracker.ietf.org/doc/html/rfc6241
https://www.openconfig.net/
https://github.com/questdb/questdb

	Executive Summary
	Table of Contents
	List of Figures
	List of Tables
	Abbreviations
	1. Introduction
	1.1. Objectives
	1.2. Relation with Other Tasks and Deliverables
	1.3. Deliverable Structure

	2. Core TeraFlow OS Components’ Overview
	3. High-Performance SDN Framework
	3.1. Context Management Component
	3.1.1. New Features/Extensions
	3.1.2. Final Design
	3.1.3. Final Interfaces
	3.1.3.1. Context
	3.1.3.2. Topology
	3.1.3.3. Device
	3.1.3.4. Link
	3.1.3.5. Service
	3.1.3.6. Slice
	3.1.3.7. Connection
	3.1.3.8. Policies

	3.1.4. Final Operational Workflows
	3.1.5. Evaluation

	3.2. Monitoring Component
	3.2.1. New Features/Extensions
	3.2.2. Final Design
	3.2.3. Final Interfaces
	3.2.4. Final Operational Workflows
	3.2.5. Evaluation

	3.3. Traffic Engineering Component
	3.3.1. New Features/Extensions
	3.3.2. Final Design
	3.3.3. Final Interfaces
	3.3.4. Final Operational Workflows
	3.3.5. Evaluation

	3.4. Path Computation Component
	3.4.1. New Features/Extensions
	3.4.2. Final Design
	3.4.3. iFinal Interfaces
	3.4.4. Final Operational Workflows
	3.4.5. Evaluation

	4. Hardware and L0/L3 Multi-layer Integration
	4.1. SBI Component
	4.1.1. New Features/Extensions
	4.1.2. Final Design
	4.1.3. Device Plugins
	4.1.3.1. Emulated Device Driver Plugin
	4.1.3.2. OLS ONF Transport API Driver Plugin
	4.1.3.3. ONF TR-532 / IETF Network Topology Microwave Driver Plugin
	4.1.3.4. OpenConfig Driver Plugin
	4.1.3.5. NETCONF Protocol
	4.1.3.6. Data models and XML Templates
	4.1.3.7. gNMI
	4.1.3.8. P4 Whitebox Switches Driver Plugin
	4.1.3.9. XR Constellation Driver Plugin

	4.1.4. Final Interfaces
	4.1.5. Final Operational Workflows
	4.1.6. Evaluation
	4.1.6.1. Emulated Device Driver Plugin
	4.1.6.2. OLS ONF Transport API Driver Plugin
	4.1.6.3. ONF TR-532 Microwave Driver Plugin
	4.1.6.4. OpenConfig Driver Plugin
	4.1.6.5. P4 Whitebox Switches Driver Plugin
	4.1.6.6. XR Constellation Driver Plugin

	4.2. Service Component
	4.2.1. New Features/Extensions
	4.2.2. 4Final Design
	4.2.2.1. L3NM -> Device (TID)
	4.2.2.2. L2NM -> Device (TID)
	4.2.2.3. P4-based L2 service handler (UBI)

	4.2.3. Final Interfaces
	4.2.3.1. L2VPN Network Model (TID)
	4.2.3.2. 1L3VPN Network Model (TID)
	4.2.3.3. P4-based L2 service handler
	4.2.3.4. Microwave service handler
	4.2.3.5. REST servicer handler

	4.2.4. Final Operational Workflows
	4.2.5. Evaluation
	4.2.5.1. L2VPN Network Model
	4.2.5.2. L3VPN Network Model
	4.2.5.3. P4-based L2 service handler
	4.2.5.4. Microwave service handler
	4.2.5.5. REST servicer handler (TAPI and XR Constellation)

	4.3. Forecaster Component
	4.3.1. New Features/Extensions
	4.3.2. Final Design
	4.3.3. Final Interfaces
	4.3.4. Final Operational Workflows
	4.3.5. Evaluation

	5. SDN Automation
	5.1. Automation (ZTP) Component
	5.1.1. New Features/Extensions
	5.1.2. Final Design
	5.1.3. Final Interfaces
	5.1.4. Final Operational Workflows
	5.1.5. Evaluation

	5.2. Policy Management Component
	5.2.1. New Features/Extensions
	5.2.2. Final Design
	5.2.3. Final Interfaces
	5.2.4. Final Operational Workflows
	5.2.5. Evaluation

	6. Transport Network Slicing and Multi-tenancy
	6.1. Slice Management Component
	6.1.1. New Features/Extensions
	6.1.2. Final Design
	6.1.3. Final Interfaces
	6.1.4. Final Operational Workflows
	6.1.5. Evaluation

	7. Conclusions
	8. ANNEX: XML templates
	8.1. L2VPN
	8.2. L3VPN
	8.3. ACL
	8.4. Inventary

	References

