

Grant Agreement No.: 101015857
Research and Innovation action
Call Topic: ICT-52-2020: 5G PPP - Smart Connectivity beyond 5G

Secured autonomic traffic management for a Tera of SDN flows

D2.1 - Preliminary requirements, architecture design, techno-economic studies and data models

Deliverable type R (Document, report)

Dissemination level PU (Public)

Due date 31/12/2021

Submission date 31/12/2021

Lead editor Ricard Vilalta (CTTC)

Authors Victor Lopez, Cristian Pilco, Oscar González, Antonio Pastor, Juan-Pedro
Fernández-Palacios (TID), Ricard Vilalta, Ricardo Martínez, Lluís Gifre,
Michela Svaluto-Moreolo, Francisco Vázquez, Javier Vilchez (CTTC),
Carlos Natalino (CHAL), Hanne Kristine Hallingby, Min Xie, Håkon
Lønsethagen (TNOR), Esther Garrido, Sergio González, Javier Moreno
(ATOS), Alberto Mozo, Stanislav Vakaruk, Luis de Marcos (UPM), Luis
Mata (UPM), Rahul Bobba (NEC), Georgios P. Katsikas (UBITECH),
Sébastien Merle (STR), Stanislav Lange (NTNU), Sami Petteri Valiviita
(INF), Nicola Carapellese (SIAE), Daniel King (ODC)

Reviewers Sébastien Merle (STR), Ramon Casellas (CTTC)

Quality Check team Adrian Farrel (ODC) and Ricard Vilalta (CTTC)

Work package WP2

Abstract

This document provides the first release of the proposed use cases, requirements, architecture design,
business models and data models for the TeraFlow OS. It is aligned with the features and data models
that will be present in TeraFlow OS release 1.

[End of abstract]

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 2 of 81

Revision History

Revision Date Responsible Comment
0.1 01.09.2021 Editor Initial structure of document
0.2 31.09.2021 Editor Input content from MS2.1
0.3 31.10.2021 All Updated content on use cases and requirements
0.4 31.11.2021 All Updated Architecture and Data Models
0.5 31.11.2021 TNOR, ATOS Updated Section 4
0.9 22.12.2021 Reviewers Reviewed version
1.0 31.12.2021 Quality

check
Version to be submitted

Disclaimer

This report contains material which is the copyright of certain TeraFlow Consortium Parties and may
not be reproduced or copied without permission.

All TeraFlow Consortium Parties have agreed to publication of this report, the content of which is
licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License1.

Neither the TeraFlow Consortium Parties nor the European Commission warrant that the information
contained in the Deliverable is capable of use, or that use of the information is free from risk, and
accept no liability for loss or damage suffered by any person using the information.

 CC BY-NC-ND 3.0 License – 2020 TeraFlow Consortium Parties

Acknowledgment

The research conducted by TeraFlow receives funding from the European Commission H2020
programme under Grant Agreement No 101015857. The European Commission has no responsibility
for the content of this document.

1 http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 3 of 81

EXECUTIVE SUMMARY
This deliverable includes the methodology to be applied in TeraFlow, initial use case definitions,
requirement elicitation, the draft architecture to be used in WP3 and WP4 for the release of TeraFlow
OS v1. Furthermore, data models for the different components and interfaces are also detailed, use
case-specific workflows are described, and next steps and conclusions are provided.

In the first section, the methodology is presented. It includes the agile approach proposed for the
development of TeraFlow, which focuses on use case definition and requirement elicitation. TeraFlow
will produce three releases of the software and an uptake of Continuous Integration/Continuous
Deployment (CI/CD) principles.

Then we present the proposed use cases, which will help identify the specific requirements. They are
classified based on the following topics: inventory, topology, service, transport network slicing,
monitoring, traffic engineering, automation, policy enforcement, Machine Learning (ML)-based
security, distributed ledger and smart contracts, compute integration and inter-domain. These use
cases provide a starting point for drafting the behaviour of the TeraFlow Software Defined Networking
(SDN) controller. Not all use cases will be demonstrated, but specific ones will be provided within each
of the different proposed scenarios.

Business model analysis for the TeraFlow SDN controller is also essential, as we need to design a valid
business model for the controller. An initial draft of the value proposition is being explored, and we
present the proposed methodology.

After that, the TeraFlow functional and non-functional requirements are presented. They serve as the
basis for the TeraFlow SDN controller Year 1 release. The functional requirements are classified into
components, and the non-functional requirements include performance, usability, scalability,
reliability, and portability.

The proposed architecture based on a micro-service architecture is presented. Each component is
detailed through a template that describes the main functionality, the proposed operations for the
component, and the suggested internal data models. A protocol buffer is described for each
component to model the services.

Later, data models are described, including external interfaces (northbound and southbound) and
internal data models. Finally, sequence diagrams are presented to depict micro-service interactions.

In conclusion, we present the planned next steps for TeraFlow.

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 4 of 81

Table of contents
Executive Summary ... 3

List of Figures .. 7

List of Tables ... 8

Abbreviations .. 9

1. Introduction .. 12

2. Methodology ... 13

3. Use Cases .. 14

3.1. Inventory ... 14

3.1.1. Hardware Inventory Collection ... 14

3.1.2. Logical Inventory Collection .. 14

3.1.3. Host tracking ... 15

3.2. Topology.. 15

3.2.1. Context & Service Endpoints Discovery .. 15

3.2.2. Single Layer Topology ... 15

3.2.3. Multi-Layer Topology .. 16

3.2.4. Multi-Domain Service Endpoint and Topology ... 16

3.3. Service ... 16

3.3.1. Service Lifecycle .. 17

3.3.2. End-to-End Service Lifecycle ... 17

3.4. Transport Network Slicing ... 17

3.4.1. Slice Life-Cycle Management .. 17

3.4.2. Vertical Dedicated Network .. 18

3.4.3. Slice Isolation .. 18

3.5. Monitoring .. 19

3.5.1. Events Collection and Intelligent Grouping .. 19

3.6. Traffic Engineering .. 19

3.6.1. PCEP for Segment Routing .. 19

3.7. Automation ... 20

3.7.1. Service Restoration ... 20

3.7.2. Service Optimization ... 20

3.7.3. Protected Services... 20

3.7.4. Zero Touch Provisioning .. 21

3.7.5. NOS Upgrade ... 21

3.8. Policy Enforcement ... 21

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 5 of 81

3.9. ML-Based Security... 21

3.9.1. Detection At Edge Nodes .. 22

3.9.2. Detection At The Cybersecurity Component .. 22

3.9.3. Adversarial Attacks to Resilient ML .. 22

3.10. Distributed Ledger and Smart Contracts .. 23

3.10.1. Wholesale of Transport Resources ... 23

3.10.2. Resource Allocation Forensic Analysis .. 23

3.11. Compute Integration ... 24

3.11.1. NFV Infrastructure Point of Presence (NFVI-PoP) interconnection 24

3.12. Inter-Domain ... 24

3.12.1. Inter-domain connectivity services ... 24

3.13. Scenario – Use Case Matrix ... 25

4. Business Model and Ecosystem Analysis .. 26

4.1. TeraFlow OS and transport network market growth .. 27

4.2. Diffusion of TeraFlow OS ecosystem .. 27

4.3. Roles in TeraFlow OS ecosystem ... 28

4.4. Interdependencies in TeraFlow OS ecosystem ... 29

4.5. Enabling and blocking mechanisms for TeraFlow OS ecosystem ... 29

4.5.1. Further work with TeraFlow OS ecosystem .. 32

5. Requirements for the TeraFlow SDN Controller ... 34

5.1.1. Inventory ... 34

5.1.2. Topology .. 34

5.1.3. Service ... 34

5.1.4. Monitoring .. 34

5.1.5. Traffic Engineering .. 35

5.1.6. Automation ... 36

5.1.7. Policy ... 36

5.1.8. Cybersecurity .. 37

5.1.9. Distributed Ledger and Smart Contracts .. 37

5.1.10. Transport Network Slicing ... 38

5.1.11. Compute .. 38

5.1.12. Inter-Domain ... 39

5.1.13. TeraFlow SDN Controller Security ... 39

5.2. Non-Functional Requirements .. 40

5.2.1. Performance.. 40

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 6 of 81

5.2.2. Usability... 41

5.2.3. Scalability .. 41

5.2.4. Security ... 41

5.2.5. Reliability ... 41

5.2.6. Portability .. 42

6. Proposed Architecture .. 43

6.1. Overall Architecture .. 43

6.2. Per Component Template ... 44

6.3. Detailed Architecture .. 45

6.3.1. CoreApps ... 45

6.3.2. netApps ... 56

6.3.3. Cloud Orchestrator Features .. 63

7. Data Models .. 64

7.1. External Interfaces and Data Models .. 64

7.1.1. NorthBound Interfaces (NBI) .. 64

7.1.2. SouthBound Interfaces (SBI) ... 65

7.2. Internal Data Models .. 65

8. Use Case Workflows.. 68

8.1. L3VPN Service Provisioning ... 68

8.2. Monitoring .. 68

8.3. Service Restoration ... 69

8.4. Traffic Engineering .. 70

8.5. Automation ... 71

8.6. Optical and L3 Centralized and Distributed Attack Detection .. 73

8.7. DLT and Smart Contracts .. 74

8.8. Compute integration ... 75

8.9. Inter-Domain Services ... 76

9. Conclusions and Next Steps .. 79

References .. 80

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 7 of 81

List of Figures
Figure 1 Proposed methodology ... 13
Figure 2 Components and relationships in an analysis of TeraFlow OS ... 26
Figure 3 Idealized growth path for an ecosystem, positioning TeraFlow OS in pre-development phase
(adjusted from [HEK11]) ... 27
Figure 4 Roles in the TeraFlow OS ecosystem, perspective of one operator 28
Figure 5 Overall proposed architecture .. 44
Figure 6 Context data model .. 46
Figure 7 TeraFlow monitoring component initial architecture... 47
Figure 8 Monitoring data model ... 48
Figure 9 Device internal data model ... 49
Figure 10 Traffic Engineering component ... 50
Figure 11 Automation component internal architecture. .. 52
Figure 12 Automation data model. ... 52
Figure 13 Policy component internal architecture. .. 53
Figure 14 Policy data model. ... 54
Figure 15 Slice data model .. 55
Figure 16 DLT component data model.. 56
Figure 17 Optical attack mitigator data model ... 57
Figure 18 Attack inference data model... 58
Figure 19 L3 Centralized Attack Detector Model Output ... 59
Figure 20 L3 Centralized Attack Detector internal data model .. 59
Figure 21 L3 Attack Mitigator Output data model .. 61
Figure 23 Different types of inter-domain communication. ... 62
Figure 23 Example of protocol buffer ... 66
Figure 24 L3VPN Service Provisioning sequence diagram .. 68
Figure 25 Monitoring sequence diagram .. 69
Figure 26 Service restoration sequence diagram. .. 70
Figure 27 Traffic Engineering Sequence Diagram ... 71
Figure 28 Zero-Touch Provisioning of a new device into TeraFlow OS. .. 72
Figure 29 Centralized and distributed attack detection and mitigation ... 73
Figure 30 DLT sequence diagram .. 75
Figure 31 NFV Service deployment using WIM ... 76
Figure 32 Inter-domain service preparation and activation ... 77
Figure 33 Inter-domain service modification .. 77
Figure 34 Inter-domain service synchronization/monitoring ... 78

https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D2.1/D21.docx#_Toc91870672

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 8 of 81

List of Tables
Table 1 Scenario – Use case matrix ... 25
Table 2 Enabling and blocking mechanisms for diffusion of TeraFlow OS ecosystem (factors adapted
from (Gawer & Cusumano, 2014; Bergek, Jacobsson, Carlsson, Lindmark, & Rickne, 2008; Hekkert,
Negro, Heimeriks, & Harmsen, 2011)) .. 30

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 9 of 81

Abbreviations
5G-PPP 5G Infrastructure Public Private Partnership

API Application Programming Interface

AI

B5G

Artificial Intelligence

Beyond 5G

BGP Border Gateway Protocol

CCAM Cooperative, Connected, and Automated Mobility

CD Continuous Delivery

CE Customer Edge

CI Continuous Integration

DC Data Centre

DDoS Distributed Denial of Service

DLT Distributed Ledger Technologies

DWDM Dense Wavelength Division Multiplexing

E2E End-to-End

E-NNI External Network-to-Network Interface

GMPLS Generalized Multi-Protocol Label Switching

GUI Graphical User Interface

IETF Internet Engineering Task Force

IP Internet Protocol

KPI Key Performance Indicators

L2 Layer 2

L2VPN Layer 2 Virtual Private Network

L3 Layer 3

L3NM Layer 3 Network Model

L3VPN Layer 3 Virtual Private Networks

LSP Label-Switched Path

MANO Management and Orchestration

MEC Multi-access Edge Computing

ML Machine Learning

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 10 of 81

MPLS Multi-Protocol Label Switching

MQP Managed Quality Path

NBI North-Bound Interface

NFV Network Functions Virtualization

NFVI NFV Infrastructure

NFVI-PoP NFVI Point of Presence

NOS Network Operating System

NSP Network Services Platform

OAP Online Application service Provider

ONF Open Networking Foundation

OPM Optical Performance Monitoring

OS Operating System

OSM Open Source MANO

OSS/BSS Operation Support System/Business Support System

OTT Over The Top

PE Provider Edge

POI Point of Interconnection

PCE Path Computation Element

PCEP Path Computation Element Protocol

PoP Point of Presence

RSVP Resource Reservation Protocol

SBI South-Bound Interface

SCS Specialized Connectivity Services

SDN Software-Defined Networking

SDO Standards Defining Organization

SLA Service Level Agreement

SLO Service Level Objective

SME Small and Medium Enterprises

SR Segment Routing

TDM Time Division Multiplexing

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 11 of 81

TE Traffic Engineering

TED Traffic Engineering Database

TRL Technology-Readiness Level

TSN Time Sensitive Networking

UNI User-to-Network Interface

VLAN Virtual Local Area Network

VM Virtual Machine

VRF Virtual Routing and Forwarding

VSI Virtual Server Instance

WAN Wide Area Network

WDM Wavelength Division Multiplexing

WIM WAN Infrastructure Manager

ZTP Zero-Touch Provisioning

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 12 of 81

1. Introduction
The TeraFlow SDN controller is a new type of secure cloud-native SDN controller that will radically
advance the state-of-the-art in B5G networks. This new SDN controller will be able to integrate with
the current NFV and MEC frameworks, provide revolutionary features for flow management (service
layer), and provide optical/microwave network equipment integration (infrastructure layer). These
capabilities will also incorporate enhanced security using ML (Machine Learning) and forensic
evidence for multi-tenancy based on DLT (Distributed Ledger Technology).

The focus of the TeraFlow project is to develop a Carrier Grade SDN controller for B5G networks.
“Carrier Grade” refers to well-tested networks or infrastructures with extremely high levels of
reliability, redundancy, and security. This objective will be demonstrated in relevant environments
with solutions at TRL 5.

Use cases for IP, optical, and microwave networks will be studied and demonstrated in commercial
and open-source solutions based on standard interfaces. The covered network domains for the
proposed solution are transport scenarios integrated with (edge) computing and storage resources.
TeraFlow will demonstrate its dynamic adaptation based on flows and applications requirements.
TeraFlow covers a wide variety of network types, ranging from distributed edge-computing, through
a transport backhaul (including optical and microwave solutions), to the network core. In addition,
TeraFlow provides carrier-grade connectivity services for B5G networks.

This deliverable, based on MS2.1, is a crucial document for the TeraFlow architecture definition.
Additionally, it includes the detailed design specifications for the TeraFlow SDN controller.

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 13 of 81

2. Methodology
Figure 1 shows the proposed use of case-based methodology. It is an iterative approach to deliver a
release of TeraFlow. First, the value of the proposed use cases is analysed from an operations
perspective. This results in requirements that will be included in open technical specifications
introduced to SDOs or as contributions to Open-Source Software. Then, an implementation is
provided, which can be adopted by network operators for immediate use.

Figure 1 Proposed methodology

The main drivers and strengths for such a methodology are:

a) It accelerates implementation and industrial production of standard interfaces for network
applications and devices;

b) It opens the market at both the network application and device layers. Currently, the lack of
standard interfaces and the complexity of the software developments in multivendor
networks is creating a considerable barrier of entrance for new companies and SMEs;

c) It simplifies the network and service modelling process, making it affordable for a network
operator; and

d) It focuses the development on the key functionalities for network operators.

TeraFlow will use this agile methodology to produce three major software releases: v1 will be released
at M12, v2 will be released at M24, and v2.1 will be released at M30. These releases will cover the
length of the technical work packages (WP3 and WP4). The primary software releases will deliver the
main functionality, while the minor release will provide bug fixes and possibly additional features
required by the operating experiments. To support software development and the ability to make
releases with minimal impact on the running services, TeraFlow will adopt a CI/ CD strategy.

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 14 of 81

3. Use Cases
This section presents the use cases proposed for the TeraFlow SDN controller. They are classified into
the following topics: inventory, topology, service, transport network slicing, monitoring, traffic
engineering, automation, policy enforcement, ML-based security, distributed ledger and smart
contracts, compute integration, and inter-domain.

These use cases refer to multiple network technologies covering IP, Optical, and Microwave. Optical
and Microwave are deployed as transport networks, while IP is intended to provision L3VPN services.

3.1. Inventory

This set of uses cases provides means to recover information and state about hardware components
of network elements and the logical configuration of the devices intended to be performed by any NBI
client controller, module, or application that aims to discover the component hierarchy of the
equipment. Use cases for optical and IP domains concerning Inventory are further described in
[TR547], [LIU21].

3.1.1. Hardware Inventory Collection

Technologies
involved

IP, Optical, Microwave

Type Inventory

Description This use case consists of retrieving all hardware (physical) information about the equipment
available from the TeraFlow SDN Controller. These components might be line cards,
transceivers, ports, etc.

3.1.2. Logical Inventory Collection

Technologies
involved

IP, Optical, Microwave

Type Inventory

Description This use case consists of retrieving all logical configuration information about the equipment
available from the TeraFlow SDN Controller. Logical inventory refers to layer 3 and layer 2.

There are three modes for this use case:

• Retrieve logical interfaces inventory - focus on retrieving all the logical or virtual
interfaces of specific equipment, such as sub-interfaces, VLAN interfaces, tunnel
interfaces, and other non-physical interfaces.

• Retrieve logical resources inventory - focus on retrieving all the logical or virtual
resources of specific equipment such as system policies for routing, access, logging,
security, etc.

• Retrieve logical protocols inventory - focus on retrieving the information
regarding all the logical protocols such as Border Gateway Protocol (BGP),
Multiprotocol Label Switching (MPLS), Resource Reservation Protocol (RSVP).

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 15 of 81

3.1.3. Host tracking

Technologies
involved

IP

Type Inventory

Description This use case retrieves all detected hosts (both at IP and MAC layers) and the latest detection
time. This will allow identification of possible required flows and implementation of other
use cases such as E2E service provisioning.

3.2. Topology

A set of abstractions has been defined to represent several views of the network topology. Use cases
for optical and IP domains concerning Context and Topology discovery are further described in
[TR547], [LIU21]. There are two modes of operations:

• Polling mode - based on periodic polling retrieval operations and after each service creation
to reconcile the actual state of the network.

• Event-triggered mode - based on an initial proactive synchronization done from the NBI client
module and a connection-oriented notification subscription session based on the NBI
Notification mechanism.

In the Internet layering reference model, the communications between a computing system are split
into seven different abstraction layers: Physical, Data Link, Network, Transport, Session, Presentation,
and Application. In the following sections, we use layer 0 to refer to transport using optical and
microwave networks and layer 3 for IP packets. Multi-layer topologies include multiple layer transport
mechanisms, typically IP over optical/microwave networks.

From the SDN controller perspective, a network domain includes the network elements that the SDN
controller manages and may be specific areas of technology, vendors or administrative regions. The
multi-domain topology includes the combined view of multiple SDN controlled domains.

3.2.1. Context & Service Endpoints Discovery

Technologies
involved

Optical, IP, Microwave

Type Topology

Description This use case retrieves all Service Endpoint [TR547] information available from the
TeraFlow SDN Controller. It is intended to be performed by any NBI client controller,
module, or application to discover the logical representation of the network done by the
TeraFlow SDN Controller.

3.2.2. Single Layer Topology

Technologies
involved

Optical, IP, Microwave

Type Topology

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 16 of 81

Description This use case retrieves all topological information available from the TeraFlow SDN
Controller. It is intended to be performed by any NBI client controller, module, or application
that aims to discover the logical representation of the network.

There are two modes of operations foreseen for this use case:

• Polling mode - based on periodic retrieval operations and after each service creation
to reconcile the actual state of the network.

• Event-triggered mode - based on an initial proactive synchronization done from
the NBI client module, and a connection-oriented notification subscription session
based on the NBI Notification mechanism.

3.2.3. Multi-Layer Topology

Technologies
involved

IP, Optical, and Microwave

Type Topology

Description This use case consists of retrieving all topological information available from the TeraFlow
SDN Controller to carry out multi-layer mapping.

3.2.4. Multi-Domain Service Endpoint and Topology

Technologies
involved

Optical, IP, Microwave

Type Topology

Description This use case intends to define how the TeraFlow SDN Controller exposes the unified multi-
domain topology, including its service mapping list and topological information.

The discovery of this information is intended to be requested proactively from a TeraFlow
SDN Controller to synchronize the information, which must be updated when the OSS
requests it.

UNIs and E-NNIs must be exposed as new service ports in the topological information.

3.3. Service

Two different kinds of service are considered:

• Layer 2/3 services: L2/L3VPN services
• Layer 0: Optical or Microwave services

In the L3VPN for 5G Services, the nodeB are directly connected to the cell site (HL5 layer). The cell site
acts as a first aggregation layer, for nodes that share the same geographical location. The connections
between the next Access Router layer (HL3) and cell site layer are made in a ring topology. The HL3
receives and aggregates traffic from the rings of the same state (geographical location). In the HL5 an
L3VPN is created to receive the interfaces of each nodeB [MUS21]. L3VPNs are used to deploy 5G but
fixed and enterprise services mainly because several traffic discrimination policies can be applied in

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 17 of 81

the network to transport and guarantee the right SLAs to the mobile customers. They have been
typically statically configured, and with the adoption of modern protocols, they can be dynamically
configured on IP routers. IP routers are interconnected using underlying network elements, such as
DWDM or Microwave transport networks. To provide E2E connectivity services, underlying network
connections shall be controlled and managed.

3.3.1. Service Lifecycle

Technologies
involved

IP, Optical, Microwave

Type Service Lifecycle

Description This use case is used to handle service lifecycle in a single domain. Two different kinds of
service are considered:

- L2/L3VPN services

- Optical or Microwave services

All service types shall be able to support multiple configuration parameters, as well as to
include multiple constraints (e.g., traffic engineering).

3.3.2. End-to-End Service Lifecycle

Technologies
involved

IP

Type Service Lifecycle

Description This use case consists of creating, modifying, and removing L2/L3VPNs without the need
for manual configuration. It also allows the creation of E2E underlying connections without
changes in the configuration during service provisioning.

3.4. Transport Network Slicing

For end-business customers (like OTT companies or enterprises), leased lines have the advantage of
providing high-speed connections with low costs. On the other hand, traffic control for leased lines is
very challenging in rapid changes in service demands. Carriers are recommended to provide network-
level slicing capabilities to meet this demand. Based on such capabilities, private network users have
complete control over the sliced resources allocated to them and could be used to support their leased
lines, when needed. A transport network slice will consist of a set of endpoints (e.g., CEs), a
connectivity matrix between subsets of these endpoints service level behaviours requested for each
sender on the connectivity matrix [FAR21]. The connectivity between the endpoints might be point-
to-point, point-to-multipoint, or multipoint-to-multipoint. Often these slices will be used to satisfy
network behaviour defined in a Service Level Agreement (SLA) [FAR21].

3.4.1. Slice Life-Cycle Management

Technologies
involved

Optical, IP, Microwave

Type Transport Network Slicing

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 18 of 81

Description This use case includes the transport network slice life-cycle management. Users may
formulate transport network slices based on the demand for services and the time needed to
schedule the resources from the entire network flexibly. Several services might be offered for
a transport network slice, including L3/L2 VPN or VLAN constraints.

3.4.2. Vertical Dedicated Network

Technologies
involved

Optical, IP, Microwave

Type Transport Network Slicing

Description Vertical industry slicing is an emerging category of network slicing due to the high demand
for private high-speed network interconnects for industrial applications.

The biggest challenge is implementing differentiated transport network slices based on the
requirements from different industries. For example, in the financial industry, to support high-
frequency transactions, the slice must provide the minimum latency and latency management
mechanism. For the healthcare industry, reliability mechanisms are needed to ensure the
delivery of HD video without frame loss. In addition, the network needs to support on-
demand, large-bandwidth allocations for bulk data migration in data centres. In each vertical
industry scenario, the bandwidth needs to be adjusted as required to ensure flexible and
efficient network resource usage.

This use case shall consider two different types of slices: Ultra-Reliable Low Latency
Communications (URLLC) and Enhanced Mobile Broadband (eMBB).

3.4.3. Slice Isolation

Technologies
involved

Optical, IP, Microwave

Type Transport Network Slicing

Description Customers require the network slice to be delivered isolated from any other network slices
delivered to any other consumers. In other words, any changes (to network loads or events
like congestions or outages) to the other network slices do not negatively impact the delivery
of this network slice. Consumers often specify isolation as an SLO and may be associated
with other SLOs, e.g., latency under traffic congestion.

Isolation can be achieved by resource partitioning and/or robustness techniques, e.g.,
dedicated resources, shared resources with safeguards, or reserved backup paths. Examples
include traffic separation via VPNs (L2/L3VPN, EVPN), interference avoidance via network
capacity planning, traffic policing or shaping, prioritization in resource utilization, etc. In
terms of security, each slice may have additional security SLOs, which should be executed
in an isolated way. On the other hand, isolation is a means to strengthen security because it
protects one slice from attacks that vary the traffic on other services or slices on the same
underlay network.

Complete resource isolation can be achieved by provisioning dedicated fibres, which is
feasible, but very expensive. Therefore, physical splitting (e.g., in time or frequency) can be
used. For instance, in optical networks, full lambdas can be isolated using Wavelength
Division Multiplexing (WDM) or Time Division Multiplexing (TDM) techniques by
assigning specific time slots to specific slices. The previous techniques are known as hard
isolation. At the opposite end of the spectrum, soft isolation solutions rely on the simple
separation of traffic delivery, such as simple MPLS or VLAN tagging. These mechanisms
offer separation, but not isolation performance guarantees. The design of intermediate
solutions between hard and soft isolation may be classified into two classes: i.) Link layer
(Layer 1.5 / Layer 2) technologies such as Flex Ethernet (FlexE), dedicated queuing, or TSN;

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 19 of 81

ii.) Network layer technologies such as MPLS-TE, Deterministic Networking (DetNet),
Segment Routing (SR).

This use case requires the provisioning of different isolation levels for Transport Network
Slices, being hard or soft isolation the minimum set required.

3.5. Monitoring

This use case describes the necessary information (including alarms and events) collected directly from
network elements through multiple protocols, such as NETCONF/YANG or by streaming telemetry
(gRPC) feeding the event manager. The received data shall be stored, analysed, and retrieved to
perform additional closed-loop automation and big data analysis.

3.5.1. Events Collection and Intelligent Grouping

Technologies
involved

IP

Type Fault Management

Description This use case consists of sending alarms and relevant information related to the alarms. It
shall also be possible to define operator-defined threshold-crossing alerts (TCAs).

3.6. Traffic Engineering

Traffic engineering (TE) allows the enforcement of traffic steering flows by leveraging MPLS tunnels or
Segment Routing paths. This allows increasing the efficiency of using the network resources by
correctly mapping the traffic flows to the available resources and improving network management,
identifying issues and reacting to overcome difficult failure situations. Furthermore, the Path
Computation Element (PCE) function has been defined to allow the performance of complex
constrained based path computation over a network graph representation. This improves the
application of TE policies in G/MPLS networks. Based on these functionalities, traffic engineering's
primary purpose is to reduce overall operating costs through more efficient network resource usage,
including link occupation, traffic rerouting, and network availability [MUS21].

3.6.1. PCEP for Segment Routing

Technologies
involved

IP

Type PCEP for Segment Routing (LSP Creation, modify and delete with SR)
Description This use case consists of creating, modifying, and deleting segment routing LSPs on

the available hardware, considering specific constraints and the available resources.
For example, the constraints given to the PCE for the calculation of the LSP could
be required latency, bandwidth consumption and hop count, and if the result should
be a strict explicit path or a loose one.

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 20 of 81

3.7. Automation

Automation greatly facilitates several key networking operations. First, automated network
management procedures include dynamic network resource discovery (i.e., topology discovery) and
network configuration via modern open standards (e.g., gRPC, P4, NETCONF/YANG). Secondly,
automated service provisioning enables programmatic creation and management of network services
at a high-level. At the same time, a low-level configuration is populated to the underlying network
elements through their association with network flows and automatically-verified policies.

Moreover, automation transforms manual network operations through a software-defined NOS,
which manages the device lifecycle via programmable control loops. Some related NOS tasks include
(i) automated NOS deployment and basic configuration as a response to newly added devices in the
network; (ii) remote NOS upgrade when a new version is available; (iii) rollback recovery upon, e.g.,
version instability issues; and (iv) NOS migration and white box configuration across different vendors.
Popular NOSes include, but are not limited to, Stratum, Cumulus, Open Network Linux (ONL), DENT,
SONiC, OcNOS, Beluganos.

Finally, automation enhances system stability by recovering flow state in case of, e.g., a race condition
and by detecting anomalous behaviours or attacks, while taking appropriate remedial actions.

3.7.1. Service Restoration

Technologies
involved

IP

Type Automation

Description In case of connectivity service failure, service paths automatically reroute themselves
whenever a change occurs in the routing table or in the status of a node or link.

3.7.2. Service Optimization

Technologies
involved

IP

Type Automation

Description This use case facilitates the dynamic network operation and optimizes the network
occupancy. This use case motivates the automatic administration, and thus modification, of
Connectivity Services using a centralized network controller.

3.7.3. Protected Services

Technologies
involved

IP

Type Automation

Description This use case consists of creating preconfigured protected connectivity services over
dedicated resources that are deployed at the very same time.

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 21 of 81

3.7.4. Zero Touch Provisioning

Technologies
involved

Optical, IP

Type NOS life-cycle management

Description ZTP is the process of deploying an NOS and a base configuration in a network element (a
router or a transponder) so that the network element can enter in production without any
human configuration. The ZTP process is done for the first time when the device is turned on
in the network. Periodically, system vendors release new versions of their NOS. A very
similar ZTP process can be done for this upgrade scenario. Nowadays, the NOS upgrade
process is a vendor-dependent process, and the procedure differs between vendor solution.
The ZTP and upgrade process presented in this part is a first step towards having a common
procedure for open white box scenarios.

3.7.5. NOS Upgrade

Technologies
involved

Optical, IP

Type NOS Upgrade

Description NOS developers continually add new functionalities and reduce the possible bugs detected in
the software that the network elements run. These software artifacts can have several releases
during a year; this demands the network operators are continually moving the devices-
software to the latest stable version. The process to automatically move from one software
release to another is what we define as the NOS Upgrade process.

3.8. Policy Enforcement

Network operators may express policy rules to be automatically enforced in the network by the
TeraFlow OS.

Technologies
involved

Optical, IP

Type Policy

Description A network operator may define a policy rule and associate it with an existing network service.
The TeraFlow OS policy component will ensure that the correct network configuration will
be automatically applied to the correct devices. This will be achieved through the interaction
among the policy, context, and device components of the TeraFlow OS.

3.9. ML-Based Security

Security is vital in the TeraFlow OS as network operations will be done by software components
virtually operating without human intervention. These three use cases exemplify the detection of
different types of attacks that can appear in the control and data plane.

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 22 of 81

3.9.1. Detection At Edge Nodes

Technologies
involved

IP

Type ML-based security
Problem Detection and identification of malware network flows crossing the data plane cannot be done

in an ML-based central component due to scalability problems and slow response times. It
would be desirable to implement a distributed solution in which ML components are deployed
at edge nodes.

Description This use case addresses the monitoring and detection of malicious network flows crossing the
data plane by placing ML components at the edge of network to achieve scalability and
increase the speed response during the detection process. To this end, a feature extractor is
deployed at the edge of the network to collect and summarise packets. The flow statistics
aggregated by the feature extractor are sent to an ML classifier. Based on the real-time
identification of malicious flows, the ML model will report insights to the TeraFlow SDN
controller to perform security assessments.

A crucial task is to determine whether the feature extraction and aggregation processes can
be done much more efficiently at the kernel level using high performance techniques (for
example, extended-bpf technology) than doing it at the application level using standard OS
interfaces.

3.9.2. Detection At The Cybersecurity Component

Technologies
involved

Optical, IP

Type ML-based security

Problem Attack detection and identification based on monitoring data.

In ML, attack detection can be realized by the anomaly detection task. Attack identification,
in ML, can be realized by the classification task.

Description This use case consists of continuously assessing the data plane security status of the network
across optical and IP layers. First, layer-specific attack detection and identification models
perform the monitoring data from optical and IP layers independently. Then, a security
assessment is performed considering both layers' monitoring data and security status. Finally,
if relevant, the security assessment performed by the edge nodes can also be considered.

There are two tasks for this use case:

• Attack detection – consists of determining whether an attack is being launched in
the network or not.

• Attack identification – consists of identifying, among the previously categorized
attack types, which type is the currently detected attack; there is also the possibility
that the attack cannot be categorized among the existing attack types, in which case
the attack can be identified as unknown and later categorized by a specialist.

3.9.3. Adversarial Attacks to Resilient ML

Technologies
involved

 IP

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 23 of 81

Type Security of the control plane.

Problem ML components are usually deployed on top of SDN controllers to help them to identify
complex patterns. However, new attacks can introduce small perturbations in the input that
humans cannot easily detect and fool ML inferences.

Description This use case addresses the design of ML algorithms that are deployed on top of the SDN
controller and react with resiliency to sophisticated adversarial AI attacks. In particular, the
set of ML components included in TeraFlow’s netApp ecosystem will be able to protect
themselves against the recently appeared adversarial attacks that try to fool ML algorithms.
Resilience to adversarial attacks is added to ML algorithms by using existing open-source
tools (e.g. Cleverhans and Foolbox). Only the models obtaining high accuracy against the
corresponding attacks included in the open-source libraries will be selected to be part of the
TeraFlow’s netApp ecosystem.
Although adversarial attacks are still in their infancy, this use case will consider several well-
known sources of attacks such as adversarial perturbations, out of distribution black box
attacks and white box attacks.

3.10. Distributed Ledger and Smart Contracts

These use cases address the design and development of permissioned blockchains. The reason for
permissioned blockchains is twofold: higher throughput, scalability, and improved privacy. The focus
will be on the security requirements and requirements for the distributed ledger component.

3.10.1. Wholesale of Transport Resources

Technologies
involved

IP

Type Distributed Ledger and Smart Contracts

Description In the transport resource wholesale market, more minor local carriers and wireless carriers
may rent resources from larger carriers (“carriers carrier”), or infrastructure carriers instead
of building their networks. Likewise, international carriers may rent resources from
respective local carriers and local carriers may lease their owned networks to each other to
achieve better network utilization efficiency.

From the perspective of a resource provider, it is crucial that a network service is timely
configured to meet traffic matrix requirements requested by its tenants. Typically, a resource
purchaser expects to use the leased network resources flexibly, just like they are self-
constructed. Therefore, the purchaser is not only provided with a network service, but also
the full set of functionalities for operating and maintaining it. In a flexible and independent
manner, the purchaser also expects to schedule and maintain physical resources to support
their own end-to-end automation using both leased and self-constructed network resources.

This use case shall consider a marketplace for wholesale transport resources using Distributed
Ledger Technologies (DLT) and smart contracts.

3.10.2. Resource Allocation Forensic Analysis

Technologies
involved

IP, Optical, Microwave

Type Distributed Ledger and Smart Contracts

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 24 of 81

Description This use case focuses specifically on the data exchanged, and data stored by the distributed
ledger component will be considered. Among others, the distributed ledger will record
runtime information such as software status (e.g., software/firmware version) and runtime
information (e.g., remote attestation, tamper detection). This use case will enhance device
and component security, enable tamper detection, and ensure the independent verification of
device status, history, and details.

3.11. Compute Integration

3.11.1. NFV Infrastructure Point of Presence (NFVI-PoP) interconnection

Technologies
involved

IP

Type Compute integration

Description The WAN Infrastructure Manager (WIM) controller can be defined as a dedicated entity to
handle the establishment, deletion and updating of the connectivity services between the
network endpoints located at different NFVI-PoPs (i.e., data centers). In other words, the
WIM controller takes over the lifecycle management of the end-to-end connections to be
allocated over an underlying transport infrastructure (WAN) offering multi-site service
connectivity. That said, the targeted Teraflow OS (acting as an SDN Controller
implementation) becomes the WIM controller interacting with an NFV orchestrator for the
sake of deploying network services requiring both cloud and networking resources.

For the specific and selected implementation of a NFV orchestrator based on the ETSI OSM
MANO release, the interworking between the OSM and the Teraflow OS (i.e., WIM
controller) relies on an available YANG data model specified in the IETF L2/L3 VPN
document [RFC8466]. To this end, the OSM offers a plugin that handles the lifecycle
management of L2/L3 VPN connectivity services (i.e., creation, removal, and updating) over
a defined REST API. Using this API, the OSM acts as the client, whilst the Compute
component of the Teraflow OS operates as the server to receive, proceed, and trigger the
L2/L3 VPN connectivity services demanded by the OSM orchestrator. This entails the
interactions of the Compute component with other components (e.g., service) involved in the
Teraflow OS solution.

3.12. Inter-Domain

An inter-domain transport network slice comprises several transport slices controlled by multiple
SDN controllers.

3.12.1. Inter-domain connectivity services

Technologies
involved

IP

Type Inter-domain

Description This use case focuses on providing dedicated QoS-aware inter-domain connectivity services
and enabling interaction between TeraFlow OS instance and peer TeraFlow OS instances that
manage different network domains to create E2E transport network slicing service.

Before exchanging any requests, two peering TeraFlow OS instances need to authenticate
each other. In the context of workflows related to the preparation and activation of inter-
domain services, interactions with the service catalogue (available service templates) and the
service inventory (existing service instances) are necessary. Moreover, in case a service

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 25 of 81

request spans multiple domains, the slice component involves the IDC by sending it an inter-
domain subslice request. In addition to sending an inter-domain subslice request to the local
slice component, the TeraFlow OS instance also forwards the inter-domain subslice request
to the other domains that are involved in the E2E service.

3.13. Scenario – Use Case Matrix

In Table 1 below, the relationship between the proposed use cases and the D5.1 scenarios. This matrix
will ease specific demonstrations in the scope of WP5.

Please refer to D5.1 for a clear description of the proposed scenarios:

- Scenario 1: Autonomous Network Beyond 5G
- Scenario 2: Automotive
- Scenario 3: Cybersecurity

 Scenario
1

Scenario
2

Scenario
3

Inventory X X
Topology X X X
Service X X X
Transport network slicing X X
Monitoring X
Traffic Engineering X
Automation X
Policy X
ML-based security X
Distributed ledger and smart
contracts

 X

Compute X

Inter-domain X

Table 1 Scenario – Use case matrix

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 26 of 81

4. Business Model and Ecosystem Analysis
Within TeraFlow, we work with business models from two approaches. First, designing business
models is part of our project’s regular exploitation activity within T6.1 and T6.3. Secondly, TeraFlow
has a specific research task – T2.3 – which analyses and suggests how future ecosystems and business
models will evolve and what they will look like - these activities enrich each other. This deliverable
reports on the ecosystem analysis and makes references to D6.2.

In our analysis of the TeraFlow OS ecosystem, we rely on frameworks sourced from platform
ecosystems and technological innovation systems [BER08] [Hek11]. Together, the frameworks offer
well-known structures and driving factors in a growing ecosystem. The data input to our analysis
includes the TeraFlow proposal, TeraFlow partners’ exploitation plans, and literature. We especially
appreciate the input from open-ended interviews with partners on topics described below.

As indicated in Figure 2, our analysis is structured with specific analytic components and their
relationships. Ecosystems are complex market configurations; thus, we must simplify to provide a
clear message. We first comment on the vision of a future market, and how the TeraFlow OS
ecosystem is meant to unleash this market. We distinguish between the growth of the TeraFlow OS
ecosystem and the growth of the transport network market that the TeraFlow OS enables. Then, we
propose a diffusion pattern for the TeraFlow OS ecosystem and suggest roles filling it. Having the roles
in mind, we structure insight on mechanisms that can both block and enable the growth of an
ecosystem sorted according to well-known driving factors. Before the analysis, we summarise the
main characteristics of an ecosystem.

Figure 2 Components and relationships in an analysis of TeraFlow OS

An ecosystem [HAL21] is a business concept meant to capture market configurations where there are
high interdependencies between roles, however, where one firm cannot directly control the others.
That is, it is different from a pure market (no interdependencies and no control) and a value chain
(interdependencies and possible to control). A mature ecosystem with settled roles and many firms
has grown big from a small market with fewer and unsettled roles and firms, and high uncertainty. By
nature, technologies and thus systemic markets with high interdependencies are characterized by
strong reinforcement effects that explain the high uncertainty about a growth and growth path. Open
interfaces and technologies make it easy to innovate, be interoperable, and grow in an ecosystem.
While this is necessary to kick off an ecosystem, it is also necessary to make it attractive for firms to
join an ecosystem by decreasing their perceived risk and increasing belief in profit opportunities in a
future market.

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 27 of 81

4.1. TeraFlow OS and transport network market growth

TeraFlow is about developing an SDN controller for the transport network which is using OPEN and
standard APIs enabling transport network abstraction and vendor agnostic programmability, thus full
interoperability across network devices from different vendors and network applications (NetApps).
Eventually, operators’ ambitions with applying Teraflow OS are increased cost efficiency, flexibility
and innovation, and decreased delivery times. Thus, an expected market pull and operator ability to
serve a growing market is a backdrop for the TeraFlow OS initiative (please, also confer with Section
2 and D6.2). Implicitly, better interoperability across hardware, software, and operators is the only
way to unleash this market growth - i.e., the ultimate argument for TeraFlow OS.

However, the argumentation for the future market contains the ambition of operators decreased
costs, and thus, delivers two conflicting messages to stakeholders:

1. Total market decrease: Cost efficiencies for operator  market decrease for providers
2. Total market growth: Operators’ innovation, addressing more needs  market growth for all

Eventually, beliefs or dis-beliefs in market growth and roles can mobilize and detract stakeholders.
We emphasize this tension here, because our analysis shows that blocking and enabling mechanisms
for the TeraFlow OS ecosystem seem to be highly affected by stakeholders’ concerns about the
constitution of a future market.

4.2. Diffusion of TeraFlow OS ecosystem

Figure 3 illustrates the diffusion of one ecosystem, with five phases [HEK11]. The vision of TeraFlow
OS is to accelerate into huge diffusion; in its current form the TeraFlow OS ecosystem is an idea in a
pre-development phase. Thus, the point of view in our analysis is an early phase of the TeraFlow OS
ecosystem diffusion. From this angle, we identify and discuss the factors and mechanisms that are
dominant in this phase, and what may bring the TeraFlow OS ecosystem into take-off and acceleration.

Figure 3 Idealized growth path for an ecosystem, positioning TeraFlow OS in pre-development phase (adjusted from [HEK11])

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 28 of 81

4.3. Roles in TeraFlow OS ecosystem

The following is an overview of the roles identified in the TeraFlow OS ecosystem, integrating roles of
today and the future as depicted in Figure 4. We expect that the roles mostly will be the same, but the
content of the role may change. As far as possible, we comment on this change.

The (network) operators implement TeraFlow OS in their operations of transport networks. Telefonica
and Telenor are examples of operators. Figure 4 is a basic illustration of how TeraFlow OS affects one
operator and its direct customers and providers. Currently, transport network operators are
predominantly cost centres in telecommunication providers, who in turn sell fixed and wireless
accesses and subscriptions to consumers and enterprises. However, in future, the operators of
transport networks may be a profit and loss centre, selling services to many types of customers.

The operator's products in the future are Transport network slice (here denoted NaaS for the network
as a service), or Layer2 Virtual Private Networks (L2VPN). These products are offered to different
customers at a price dependent on, e.g., traffic volume or quality.

Figure 4 Roles in the TeraFlow OS ecosystem, perspective of one operator

The operator's customers may be an entity that is part of the same telecommunication provider and
combines transport, core, and access networks – i.e., the communication service provider (CSP) role
– or a digital service provider (DSP), which combine network components from different providers.
Furthermore, other operators of transport networks are important customers. It is an additional
challenge for some operators to operate the transport network across many countries and local
operators. Such customers and other operators will have yet other customers who demand services
and drive market growth.

The first set of providers to the transport network operator are solution providers who sell hardware,
with embedded proprietary software and proprietary interfaces (network management systems).
Infinera and SIAE are examples and partners in TeraFlow. Currently, this is the main way of selling
hardware and software to operators, mostly with a price per hardware unit. The different provider-
specific hardware interfaces constitute the big challenge that TeraFlow OS addresses and intends to

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 29 of 81

replace vendor agnostic programmability. For traditional hardware providers, their role is shifting
towards being providers of software, with new market terms and business models.

In the TeraFlow project there are also solution providers who sell only software in combination with
hardware; however, their current role is marginal compared to hardware providers. It is expected that
TeraFlow OS opens for smaller software providers and drives previous hardware providers into the
role of software providers. Thus, software providers may deliver to, or be complements to the
hardware providers indicated in Figure 4. Ubitech is a TeraFlow partner which deal with software and
adjust it to hardware or help other software providers to deploy their applications on hardware or in
networks.

The second set of providers are those developing and selling NetApps which can be used in the
operation of the transport network. Currently, providers will have to align their NetApps to the
proprietary interfaces offered by hardware providers. It is expected that the number of NetApp
providers could increase if the TeraFlow OS ecosystem takes off. NEC is a partner in TeraFlow and an
example of a potential provider of a security NetApp.

We suggest that Standard Developing Organizations (SDOs) have a distinct role in the TeraFlow OS,
as a governance mechanism ensuring sustainability in the long term. For open-source initiatives such
as TeraFlow OS, SDOs must be understood to include well-governed and trusted open-source
communities such as OpenSource Mano.

The provider of an SDN controller is also a relevant role. Currently, actors in these roles provide
complete systems which address the same domain as TeraFlow OS (for definitions and competitors,
see D6.2). However, in future, as open-source software, TeraFlow OS (APIs for standard network and
service modelling) would be sourced from a shared repository governed by a designated community
(e.g., such as ETSI’s opens-source project OSM) or implemented and published as fully interoperable
standards by well-known SDOs. In this context, roles as system and SW integrators or consultancies
may emerge and extract a significant share of the market for SDN controllers [BER08]. E.g., the partner
Peer Stritzinger sees itself as a provider of solution integration in the TeraFlow context.

In Figure 4, TeraFlow OS is the network management system used on the interface between the
operator and solution providers, and which NetApp providers also use (see also D6.2).

4.4. Interdependencies in TeraFlow OS ecosystem

Figure 4 depicts only one operator using TeraFlow OS. Ideally, more operators must use TeraFlow OS
to put sufficient pressure on hardware providers to adhere to open interfaces. Furthermore, the
market for independent NetApps becomes sufficiently attractive only when providers can replicate
implementations across operators. Finally, the need for transport network interoperability between
operators calls for a wider implementation. Thus, there is interdependency between roles and their
motives in the TeraFlow OS ecosystem. It becomes important to reach a critical mass in the
development, demand for and use of Teraflow OS to take off and mobilize and motivate yet other
operators, providers, and SDOs.

4.5. Enabling and blocking mechanisms for TeraFlow OS ecosystem

Many enabling and blocking mechanisms will affect take-off and eventual acceleration of the TeraFlow
OS ecosystem. In Table 2, we have sorted our input in this respect according to well-known driving

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 30 of 81

factors for growth for technological systems: legitimation; profit opportunities; market formation
vision; experimentation; knowledge exchange and development; open technologies; network
effects/externalities [GAW14], [BER08], [HEK11]. Research has shown that these factors have a lot of
explanatory power on an aggregated level for how an ecosystem evolves and should be catered to
from a strategic point of view. The mechanisms that enable or block, for instance, a factor like
experimentation, can vary and be case-specific for the TeraFlow OS. It should be noted that the
relationships between mechanisms and factors are not mutually exclusive.

Furthermore, the input is what partners can imagine as potentially having positive or negative effects
on TeraFlow OS diffusion, now and in future. At this stage in our analysis, we share the raw input in
Table 2. Still, we already see that the patterns and focus of interest that emerge are consistent with
TeraFlow OS being in a pre-development phase.

It should not come as a surprise that a lot of the input concerns the openness of technologies, and
how beliefs and attitudes are either positive or negative for the evolution of TeraFlow OS. In line with
expectations in an early phase [HEK11], the intention and relevance of building knowledge is
motivating partners, but also seen as an obstacle if it is not shared efficiently in a larger community.
It is well-known that stakeholders must be able to envision profit opportunities for themselves in early
phases to be motivated; in our data we see that a lot of resistance towards TeraFlow OS can be found
in a skepticism to future market growth and a profitable role for providers. Yet others cannot see that
there is an alternative to accepting the openness TeraFlow OS introduces.

Table 2 Enabling and blocking mechanisms for diffusion of TeraFlow OS ecosystem (factors adapted from (Gawer &
Cusumano, 2014; Bergek, Jacobsson, Carlsson, Lindmark, & Rickne, 2008; Hekkert, Negro, Heimeriks, & Harmsen, 2011))

Enabling mechanisms Driving factors for
TeraFlow OS

diffusion

Blocking mechanisms

• Large providers: the market moves towards
openness, open interfaces

• Governance system for standards and open
source is stable

• Large operator takes lead in openness
• Large operators ally for openness, have a

forum for sharing
• Providers see it as an advantage to be

pluggable, implemented easily, interact with
open interfaces - to be compliant

• SDO’s acknowledgement

Legitimation
(trust in

sustainability over
time)

• HW and SW providers reluctant to adhere to
open source

• Operators do not know if TF OS is the
winner – wait. Followers.

• Political positions on standards (country,
actor)

• Standard/open source will not be sustained

• Success stories
• Use-cases are good (need to be solved)
• Operators start to use and purchase open

HW and SW, market grows, and some
providers increase their sales

• Proprietary providers are lagging – decide to
join the “open” trend to take part in market
growth

• Opens source business models: Proprietary
on top, Semi open, Exclusive knowledge

• SW developers’ knowledge is unique – basis
for profit extraction, e.g., consultancy

• Large providers – think there eventually will
be other business models

• Small provider - With open source we can be
part of the larger market – spin offs

Profit opportunities
(belief in own profit

in future market)

Market formation
vision

(belief: market will
grow from small to

large)

• Providers (all) think appropriation level for
open tech (profit opportunities) too low

• Providers cannot see willingness to pay for
coding, system and SW integration,
consulting, debugging

• Future markets are perceived as too small
• Providers’ price and profit decrease – fear

future profit
• Providers see only cost cutting – not market

growth
• Providers see only additional costs – and no

benefits for them
• Do not recognize the need for

interoperability
• Operators not interoperable and thus, too

few customers to scale for small providers

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 31 of 81

Enabling mechanisms Driving factors for
TeraFlow OS

diffusion

Blocking mechanisms

• Small provider – the market moves towards
open, customers want this

• Small provider – costs less when not
developing/maintaining proprietary
interfaces – network mngm. systems

• Interfaces are open – still possible to profit
from proprietary embedded SW

• Interoperability is necessary to manage to
grow the market (total, and for own firm)

• Interoperability between operators is
necessary to bring scale to providers

• Providers certain about short term
disadvantages - uncertain about how things
will evolve in long term

• Operators will not invest or pay – till
benefits demonstrated

• Providers will not deliver – till sure they get
paid

• Small provider – we can adhere to what is
required – deliver specialized services

• A platform for experimentation, testing,
demonstrating innovations – a neutral lab

• A prototype environment where it is easy to
develop and implement

• Certifications – from experimentation
• Allowing experimentation and learning
• Mobilize providers with use-case method –

invite providers to solve issues
• To test in an SDO environment

Experimentation
(will reduce

uncertainty and
enable innovation

and growth)

• Increased innovation leads to increased
competition

• Testing is expensive
• Not possible to get competitors to

contribute within same environment –
assessing competitors’ innovations and
works is weird

• No willingness to fund experimentation lab

• Large developer community – critical mass
• Large providers want to learn – put pressure

on providers
• Open interfaces – demonstrated feasibility
• Active sharing of insight with all stakeholders
• Continuous collaboration in research projects
• Use of code repositories like GitLab
• Available SW development environment,

with e.g., downloadable virtual machines,
sample topologies, graphical interfaces

• Code is well explained and advertised – good
enablement of using code

• Connect to – be part of larger community
• Code is published, shared, maintained, and

governed in a professional way
• Common rules and recommendations for

coding are established and shared

Knowledge
exchange and
development

(will build insight
on all other driving
factors, knowledge

externalities)

• Small developer community
• Open-source code not published properly
• Not properly implemented to SDOs
• Developers do not risk joining a small

project – coding is wasted
• Code does not have the umbrella, the

ecosystem outside your own project/code
• It is a huge effort to come up to speed on

open-source coding for domain
• Operators are locked into knowledge

associated with existing providers
• Operators are locked into HW regime – have

no SW expertise

• Operators adhere to use of, demand, and use
open interfaces – from all providers

• HW providers adhere to the use of open
interfaces

• Large developer community
• Open source turns out to be far more

efficient production of code
• Interface standards are good –

implementations are
compatible/interoperable

• It is easier to implement new interfaces and
reprogram HW with network
programmability – less costly to adhere to
new standards and interfaces

• Large providers loose contracts when not
adhering to open interfaces /standards

Open technologies
(will ease ability to
innovate and grow)

• Large providers are too fond of licensing
model – the potential customer lock-in is
attractive

• Not invented here syndrome
• Open will not function anyway – stay with

current (open=naive)
• It is only semi-open – there is proprietary

software on top
• Exclusive knowledge
• Code is eventually, not disclosed
• HW and SW providers reluctance to adhere

to open source
• For providers, to implement a new open

standard interface – is costly
• Software is not good enough
• Standards are only ideas – not realized
• Open-source code/standards are not good

enough – allow variety

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 32 of 81

Enabling mechanisms Driving factors for
TeraFlow OS

diffusion

Blocking mechanisms

• Smaller providers innovation and
competitiveness – pressure on large
providers

• Easy to join for small NetApp providers
• Operators are positive to open-source –

frontrunners
• Well-managed implementation into SDOs
• System functions across standards/SDOs
• Compatibility between HW and SW
• Mutual knowledge between HW and SW

providers
• Software is good
• Black box components (closed embedded

code) are easily provided in open
environment

• Ensure sustainability and maintenance by
being part of and SDO

• Ensuring standards are realized – not just
ideas

• SW for too specific areas is high risk
• Operators

- do not adopt e.g., TeraFlow OS
- think network is “baby” – good
relationships with providers
- dependent on providers
- are fine to buy HW and press prices
(success story)
- think TeraFlow OS is too small
- do not trust the “providers”
- do not have the SW knowledge – will have
to buy externally anyway
- are bad at specifying – specify failures
- do not have a big enough pain point
- quality levels too uncertain, network
assurance at risk

• Resistance towards changing a stable system
• Code is costly to maintain

• Observed operators and providers innovation
diffusion – increased profits

• Value (creation with) of open-source SW
increases when shared

• Traction for open/standard interface – not
important that TeraFlow OS wins

• Succeed/solve openness in IP network –
other layers will follow

• Many other components have access to, and
start to use the interfaces

Network
effects/externalities

(critical mass
reached, leading to

further increase)

• No traction

4.5.1. Further work with TeraFlow OS ecosystem

It is essential to cultivate enabling and mitigate the blocking mechanisms to ensure the evolution of
the TeraFlow OS ecosystem. Currently, the TeraFlow project can follow up on four themes:

• Aim to enable good exchange of and development knowledge about the technology in
question in the wider community. This would motivate project partners and mobilize yet
others to contribute to knowledge development

• Aim to clarify how TeraFlow OS can be ensured sustainability to decrease the perceived risk
of contributing. E.g., it is risky to participate in an open-source initiative that will not take off.
This would also increase the legitimacy of the initiative

• Establish a trustworthy story for how the total market may grow
• Elaborate on roles in TeraFlow OS ecosystem and assess their future business models and

profit opportunities

More concretely, the next step in the ecosystem analysis will be to:

• Continue interviews and data collection and draw further learnings
• Further clarify the interdependencies in the TeraFlow OS ecosystem
• Describe potential future roles in more details, and how their business models can be aligned

with the intentions of TeraFlow OS ecosystem.

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 33 of 81

• Clarify how a future TeraFlow OS can be governed and maintained

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 34 of 81

5. Requirements for the TeraFlow SDN Controller
In this section, the different requirements for the TeraFlow SDN Controller are introduced. They have
been classified as:

• Functional Requirements: describe what the system must or must not do and can be thought
of in terms of how the system responds to inputs.

• Non-functional Requirements: are requirements that specify criteria that can be used to judge
the operation of a system rather than specific behaviours. They are contrasted with functional
requirements that define specific behaviour or Functional Requirements.

In order to have them ordered, the same use case topics as described in Section 4 are used.

5.1.1. Inventory

• [REQ-INV-01] The SDN controller shall be able to recover information and state about
hardware components of network elements and the logical configuration of the devices,
including logical interfaces configuration from one node and all the parameters related to
interface configuration (description, IP addressing, VLAN, etc.) of a node.

• [REQ-INV-02] The SDN controller shall offer the retrieved inventory to a client.

5.1.2. Topology

• [REQ-TOP-01] The SDN Controller shall provide a set of abstractions to represent several views
of the network topology.

• [REQ-TOP-02] The SDN controller shall be able to collect the required information for
providing network topology from the Network Devices or configuration files.

5.1.3. Service

• [REQ-SERV-01] The SDN Controller shall be able to manage the life cycle of L2VPN and L3VPN
services [MUS21]. These are widely used to deploy 5G fixed and enterprise services mostly
because several traffic discrimination policies can be applied in the network to transport and
guarantee the right SLAs to the mobile customers.

• [REQ-SERV-02] An L3VPN service shall create a virtual routing and forwarding network
instance (VRF) in each of the nodes involved in service deployment. This routing instance
allows routing information to be propagated between the sites involved in the service.

5.1.4. Monitoring

Notification subscription requirement:

• [REQ-MON-01] TeraFlow OS shall allow external subscriptions to the notification service to
enable visualisation of relevant data at a higher level of abstraction, thus assisting the
TeraFlow OS in identifying potential problems and gaining dynamicity. Moreover, external
agents (subscribers) shall be notified of events related to network/slice data (e.g., topology or
connectivity) depending on the nature of the subscription, see below.

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 35 of 81

Topology monitoring requirements: It is expected that the SDN controller shall gather data on
topology events and be able to use the notification system to inform subscribers. The basic preliminary
actions to be monitored/notified in this regard are:

• [REQ-MON-02] Addition of a new topology element (e.g., topology, link, node, node edge
point).

• [REQ-MON-03] Modification of parameters of existing elements in the topology (e.g.,
scaling/migration of resources).

• [REQ-MON-04] Status of operational changes of existing elements (e.g., up/down status),
assuming both control plane level (network element-SDN controller) and data plane level
(inter network components).

• [REQ-MON-05] Deletion of elements in the topology.

Connectivity monitoring requirements: The SDN controller will be able to collect data related to the
connectivity of the elements in two different views: network or slice. In this regard, the main features
to be monitored (or notified to subscribers) are:

• [REQ-MON-06] New connectivity-service element inserted/removed in/from the
network/slice.

• [REQ-MON-07] Status change of existing connectivity-service element in the network/slice.
• [REQ-MON-08] Status change of the switching conditions of an existing connection element

in the network/slice.

Microservice life-cycle monitoring requirements: The SDN controller will report on metrics that
inform on the lifecycle operations of the microservices within the TeraFlow OS deployment.
Functionalities that shall be monitored/notified according to the typical phases of a microservices life
cycle are:

• [REQ-MON-09] Downshifting monitoring/notification, cloud-to-edge operations shall be
notified to subscribers to guarantee cloud-to-edge migrations.

• [REQ-MON-10] Runtime monitoring/notification will be targeted to enable external
monitoring of microservice’s runtime metrics usage, e.g., power, CPU, storage, memory, or
bandwidth.

• [REQ-MON-11] Edge-to-cloud load balancing monitoring/notification, subscribers shall be
notified of edge-to-cloud migration operations when required.

5.1.5. Traffic Engineering

• [REQ-TE-01] The SDN controller should configure the compatible devices through the device
management component so they can connect to the PCE.

• [REQ-TE-02] The SDN controller should build a traffic engineering database (TED).
• [REQ-TE-03] The SDN controller should expose an API to create, modify and delete segment

routing LSPs.

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 36 of 81

5.1.6. Automation

Network management requirements:

• [REQ-AUTO-01] Automatic topology discovery and inventory tracking of both physical and
virtual network elements.

• [REQ-AUTO-02] Automated configuration and management through NBI (e.g., REST/gRPC)
and SBI (e.g., NETCONF/YANG) interfaces based on open standards.

Service provisioning requirements:

• [REQ-AUTO-03] Automatic creation and management of network services specified via an
open standard NBI, as well as communicating, through its SBI, with all the network elements
needed to implement the service.

• [REQ-AUTO-04] Automated association of a network service to one or more flows.

Network operations’ requirements:

• [REQ-AUTO-05] Automatically deploy a Network Operating System (NOS) and a base
configuration when a new network element is added to the network, such that the network
element enters in production without human configuration.

• [REQ-AUTO-06] Remotely upgrade the entire NOS or some of its components when a vendor
releases a new version.

• [REQ-AUTO-08] Run-time and secure rollback version recovery when a NOS needs to be
upgraded/downgraded in response to a detected problem.

• [REQ-AUTO-09] Run-time NOS migration from one vendor to another.
• [REQ-AUTO-10] Automatic provisioning of basic white box configuration, common across

multiple white box vendors.

System stability requirements:

• [REQ-AUTO-11] Automatically perform rollback flow state recovery operations in case of a
misconfiguration or race condition

• [REQ-AUTO-12] Automatically translate data stemming from detected attacks to specific
remedy actions.

• [REQ-AUTO-13] Automatically detect network elements with anomalous behavior.

5.1.7. Policy

• [REQ-POL-01] The SDN controller shall allow network operators to easily create policy rules.
Each policy rule will be comprised of high-level policy conditions (i.e., traffic selectors) and
actions (i.e., traffic treatments) and will be triggered upon a network event.

• [REQ-POL-02] A policy rule shall be associated with a service ID.
• [REQ-POL-03] A policy rule shall be associated with a policy state, which indicates whether

this policy is (i) planned for enforcement, (ii) actively enforced, or (iii) inactive.
• [REQ-POL-04] A policy rule shall be associated with a policy type, indicating whether this policy

applies to a single device (I.e., device-level policy) or a network segment (i.e., network-wide
policy).

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 37 of 81

• [REQ-POL-05] A policy rule shall be associated with a priority, which indicates the order of this
policy in a broader list of policies applied to the data plane.

• [REQ-PO-L06] A policy rule shall be associated with a timeout, which indicates the amount of
time for this policy to remain active. After the timeout expires, the state of this policy is put
on hold, after a data plane update ensures that no flow rules of this policy remain active. In
case of no timeout specified, a policy is characterized as permanent. To revoke such as policy,
an explicit policy deletion must be issued by the TeraFlow controller.

• [REQ-POL-07] Once a policy rule is mapped and applied to a service, the SDN Controller will
automatically associate this rule with a set of device IDs. This way, device, and service
(re)configuration will be co-scheduled in order to enforce this policy.

5.1.8. Cybersecurity

Data gathering requirements:

• [REQ-CYB-01] The network traffic shall be captured by nodes themselves or based on
mirroring techniques.

• [REQ-CYB-02] Telemetry and network flows are processed to extract statistical information
including the information per packet, per network flow, and per protocol (TCP/UDP).

• [REQ-CYB-03] Statistical information extracted from telemetry and network flows is used as
data source to ML-based Cybersecurity components.

Interface requirements:

• [REQ-CYB-04] The ML-based Cybersecurity solution notifies the TeraFlow SDN controller if it
detects a malicious activity (i.e., network intrusions and harmful connections).

• [REQ-CYB-05] A classification of the malicious activity will be provided (e.g., a DDoS attack
connection, a cryptomining attack connection, a vulnerability scanner attack, an unknown
attack) jointly with a confidence value (e.g., a probability).

• [REQ-CYB-06] After a malicious activity is detected and sent to the TeraFlow SDN controller, a
countermeasure should be provided to secure the network.

Machine Learning requirements:

• [REQ-CYB-07] Edge nodes can host ML-based inference engines to detect cybersecurity
attacks locally.

• [REQ-CYB-08] Edge nodes hosting ML-based inference engines can provide predictions jointly
with telemetry and statistical information.

• [REQ-CYB-09] ML-based inference engines will be resilient to adversarial attacks that will try
to fool them to produce incorrect inferences.

5.1.9. Distributed Ledger and Smart Contracts

• [REQ-DLT-01] The TeraFlow SDN Controller shall be able to interact with other SDN Controllers
using DLT to rent resources from respective local carriers and local carriers may lease their
owned networks to each other to achieve better network utilization efficiency.

• [REQ-DLT-02] A network service is configured in a timely way to meet traffic matrix
requirements requested by its tenants.

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 38 of 81

• [REQ-DLT-03] The distributed ledger will record device information such as software status
(e.g., software/firmware version) and runtime information (e.g., remote attestation, tamper
detection).

• [REQ-DLT-04] The distributed ledger will enable tamper detection and ensure the
independent verification of device status, history, and details (remote attestation).

5.1.10. Transport Network Slicing

• [REQ-SLI-01] The TeraFlow SDN Controller shall provide transport network slice life-cycle
management. Users may formulate transport network slices based on the demand for services
and time to schedule the resources from the entire network's perspective flexibly. Several
underlying services might be offered for a transport network slice, including L3VPN, MPLSVPN,
or VLAN constraints.

• [REQ-SLI-02] The TeraFlow SDN Controller shall provide vertical industry slicing, which is a
category of network slicing that is emerging due to the high demand for private high-speed
network interconnects for industrial applications. In this scenario, the biggest challenge is to
implement differentiated optical network slices based on the requirements from different
industries.

• [REQ-SLI-03] Isolation shall be provided through resource partitioning and/or robustness
techniques, e.g., dedicated resources, shared resources with safeguards, or reserved backup
paths. Examples include traffic separation via VPNs (L2/L3VPN, EVPN), interference avoidance
via network capacity planning, traffic policing or shaping, and prioritization in resource
utilization.

• [REQ-SLI-04] Hard isolation can be achieved by provisioning dedicated fibres, which is feasible,
but very expensive. Therefore, physical splitting (e.g., in time or frequency) can be used. For
instance, in optical networks, where full lambdas can be isolated (WDM), or TDM techniques
by assigning specific time slots to specific slices.

• [REQ-SLI-05] Soft isolation solutions shall rely on the simple separation of traffic delivery such
as MPLS or VLAN tagging. These mechanisms offer separation, but not isolation performance
guarantees. The SDN controller should be able to create soft network slices, via creation of
multiple VRFs and VSIs on a network element (physical or virtual), as described in section 4 of
the TIP MUST SBI Spec. [REQ-SERV-01], and [REQ-SERV-02] should be supported within these
soft network slices.

• [REQ-SLI-06] The design of intermediate isolation solutions between hard and soft isolation
may be classified into two classes: i.) Link layer (Layer 1.5 / Layer 2) technologies such as Flex
Ethernet (FlexE), dedicated queuing, and TSN. ii.) Network layer technologies such as MPLS-
TE, Deterministic Networking (DetNet), Segment Routing (SR).

5.1.11. Compute

From a macroscopic perspective, the Compute component is the front-end to take over of the
interaction of the Teraflow OS instance with an external NFV orchestrator such as the OSM
implementation. The aim is to automatically receive and process connectivity service requests from
the NFV Orchestrator (e.g., creation, deletion, and removal) and then interact with other Teraflow OS
components to meet such requested connectivity service operations. To this end, the following
requirements need to be fulfilled:

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 39 of 81

• [REQ-COM-01] The Compute component should support a well-defined API (including a data
model and protocol) to enable the interaction with an external NFV orchestrator
implementation.

• [REQ-COM-02] The connectivity services requested from the NFV Orchestrator should support
both L2VPN and L3VPN flows.

• [REQ-COM-03] The API between the NFV Orchestrator and the Compute Component should
support the complete lifecycle management of the connectivity services. This encompasses
the creation of point-to-point connectivity services specifying the service identifier,
connection endpoints, transport layer and associated attributes (e.g., VLAN), traffic
engineering details (e.g., guaranteed bandwidth, maximum tolerated latency, etc.), etc.

• [REQ-COM-04] The Compute component should keep track of the active connectivity services
(e.g., in a dedicated repository) to handle the operations arriving from the NFV orchestrator
such as removing or updating a specific connectivity service.

• [REQ-COM-05] The Compute component should offer a mapping function to “translate” the
incoming connectivity service operation based on the defined API (i.e., protocol and encoding)
to the commands and messages based on gRPC to interact with other Teraflow OS
components (e.g., Service).

5.1.12. Inter-Domain

The Inter-Domain use case describes the interaction of a TeraFlow OS instance with peer TeraFlow OS
instances which manage different network domains. The requirements include:

• [REQ-INT-01] Before exchanging any requests, two peering SDN Controller shall authenticate
each other.

• [REQ-INT-02] After receiving an inter-domain subslice request from a peering SDN Controller,
the SDN Controller analyses the order and – if the order can be fulfilled – uses the
corresponding internal interfaces to (partially) satisfy the request.

• [REQ-INT-03] Similarly, when a modification of an inter-domain E2E service is requested, the
SDN Controller shall use the corresponding internal interfaces to propagate the modification
request.

• [REQ-INT-04] In the context of workflows related to the preparation and activation of an inter-
domain service as well as the modification of services, interactions with the service catalogue
(available service templates) and the service inventory (existing service instances) are
necessary.

5.1.13. TeraFlow SDN Controller Security

Traditional SDN controllers, implemented as monoliths, provide authentication and authorization
interfaces for external users and components (GUIs and APIs). Since those controllers are monoliths,
securing the external interfaces is mostly sufficient for securing the controller. Internal
communication between components is performed through programming-language-level calls and
there are (mostly) no security concerns regarding those calls. But these might include programming
languages errors, security of the hosts running the System, or even memory errors.

TeraFlow, on the other hand, adopts a cloud-native architecture. This means that different
components of TeraFlow will communicate through standardized network protocols, and different

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 40 of 81

components might be running in different machines in the network. Therefore, besides the usual
authentication and authorization procedures commonly found in SDN controllers, TeraFlow shall
ensure the secure message exchange among components.

• [REQ-SEC-01] The TeraFlow SDN controller shall provide means for external user/entity
authentication. These users/entities can be people accessing the TeraFlow GUI, or external
clients (automated code) using TeraFlow APIs.

• [REQ-SEC-02] The TeraFlow SDN controller authentication procedure shall maintain a record
of the action permissions that are available for each one of the users/entities registered.

• [REQ-SEC-03] The TeraFlow SDN controller shall provide means for user authorization. This
means that any component shall be able to obtain a handle for the currently authenticated
user, including its permissions, to determine whether the current user has enough permissions
to execute a given operation.

• [REQ-SEC-04] The TeraFlow SDN controller shall have mechanisms that allow the components
to authenticate among themselves, therefore ensuring that the internal communication
among components cannot be intercepted, modified, or falsely generated by a third-party
malicious entity.

5.2. Non-Functional Requirements

We have analysed the following non-functional requirements: performance, usability, scalability,
security, and portability.

5.2.1. Performance

• [REQ-PERF-01] The TeraFlow SDN controller shall provide an increase by an order of
magnitude (x10) of the flow processing capabilities of current SDN controllers. This results in
the ability to handle a Tera of connectivity services.

• [REQ-PERF-02] The SDN controller shall provide sufficient processing and sample rates of
metrics that does not limit: i) the achievement of the objectives in the use cases; and ii) the
timely identification and notification of potential problems, maximising the possibilities for
mitigation. The expected rates shall be determined based on three criteria: i) objectives of the
use case; ii) nature of the metric; and iii) priority of the metric.

• [REQ-PERF-03] Cloud-native flow management shall be provided with a control plane latency
below 10 milliseconds. The SDN controller shall increase multi-layer resource allocation
efficiency by 30% due to seamless deployment of VPN services.

• [REQ-PERF-04] Proactive SDN traffic optimization by means of ML algorithms (e.g., collection
of real-time KPI data and use of ML to forecast where and when a problem is likely to occur,
to reroute traffic before it happens). The SDN Controller shall provide a reduction of 25%
resource usage due to ML-based traffic optimization.

• [REQ-PERF-05] The introduction of follow-me and context-aware network connectivity
services shall generate at least a 10% reduction in network flow requests, which are generated
due to network mobility.

• [REQ-PERF-06] Novel algorithms for latency budgets as a function of application requirements.
These algorithms shall improve network consumption by 30% by providing joint strategies for
allocation of compute and network resources.

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 41 of 81

• [REQ-PERF-07] Reduction of energy consumption by 30% thanks to algorithms that combine
centralized computing elements and low-energy networks, as well as low-cost edge
computational resources.

• [REQ-PERF-08] Improve network resource usage by 30% by adopting multi-tenancy resource
allocation algorithms.

5.2.2. Usability

• [REQ-USA-01] The TeraFlow SDN controller shall provide a user interface that allows triggering
a default service within seconds.

• [REQ-USA-02] The SDN controller shall provide a system to enable subscribers to visualize the
metrics in a friendly and customizable manner according to their needs.

5.2.3. Scalability

• [REQ-SCA-01] The SDN controller shall provide autonomous replication of micro-services to
support high numbers of incoming requests.

• [REQ-SCA-02] Optimized consensus algorithms for permissioned ledgers that scale above 100
nodes. Privacy-aware smart contracts for network management tasks, and in particular, the
ones related to network resources and services, thus providing forensic evidence in multi-
tenant scenarios.

5.2.4. Security

• [REQ-SEC-01] Experimentally verified identification of known physical-layer attacks with
99.9% or higher accuracy and of previously unseen attacks with 90% or higher accuracy with
the inaccuracy fully compensated through window-based attack detection. Protection
mechanisms will be able to interact with Flow Management, in the order of milliseconds, to
create, modify, or remove potential flow threats. ML-based attack detectors shall be resilient
to advanced threats, especially to adversarial attacks. 90% of attacks detected in less than 0.5
seconds.

• [REQ-SEC-02] Edge and central ML-based detectors operating in optical, network, and
transport layers to promptly detect and mitigate attacks. Increase of protection reaction
agility by reducing centralised response latency by 30%. ML-based threat detectors will use
AutoML techniques to reduce model complexity, thus decreasing resource usage by 25% in
comparison with current techniques.

5.2.5. Reliability

• [REQ-REL-01] The SDN controller shall monitor micro-services and per-flow status to apply
healing mechanisms (e.g., component restart, flow redirection) both from a control and a data
plane perspective.

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 42 of 81

5.2.6. Portability

Portability non-functional requirements refer to the usability of the same software in different
environments.

• [REQ-PORT-01] The SDN Controller shall run on top of a Kubernetes cluster deployed over an
UBUNTU 20.04 LTS server. The minimal required hardware shall be 4vCPU, 32Gb RAM and
1Tb HD.

• [REQ-PORT-02] User Interface shall be accessible for Firefox web browser and compliant with
W3C standards.

• [REQ-PORT-03] Integration of the TeraFlow OS to support network visibility and management
in compute infrastructure (e.g., Kubernetes, OpenNess, and Akraino). Moreover, TeraFlow will
develop a specific plugin for NFV and MEC orchestrators to support integration with the
TeraFlow SDN controller.

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 43 of 81

6. Proposed Architecture
This section presents the proposed architecture for the TeraFlow SDN controller. First, we will
provide an overall view of the architecture. Secondly, we proceed with per-component
architectures, with a special focus on RPC and data models involved. Finally, we present several
workflows that involve multiple component interaction.

6.1. Overall Architecture

The cloud-native software architecture is based on container-based services (containers are a
lightweight virtualization technique), which are deployed as microservices and managed on elastic
infrastructure through agile DevOps processes and continuous delivery workflows. These micro-
services are a software development technique that structures an application as a collection of
interconnected and related services. In a micro-services architecture, services are simple and detailed,
and the protocols are lightweight.

Figure 5 provides an overview of the proposed TeraFlow OS architecture. The TeraFlow OS is a cloud
native SDN controller that is composed of multiple micro-services. Microservices interact with each
other using a common integration fabric. Moreover, in the context of B5G networks, the TeraFlow OS
can interact with other network elements, such as NFV and MEC orchestrators, as well as OSS/BSS.
The TeraFlow OS controls and manages the underlying network infrastructure, including transport
network elements (optical and microwave links), IP routers, as well as compute nodes at edge or public
cloud infrastructures.

The TeraFlow OS cloud-native architecture provides multiple benefits which have already been clearly
demonstrated in other cloud computing applications. The most important benefit is application
resiliency, where microservices are monitored and restarted in case of misbehaviour. Another benefit
is application scalability, which accommodates an increasing number of requests (i.e., load), with the
deployment of new microservice instances when required. To detail the different TeraFlow OS
functionalities (each one based on a single or multiple micro-service(s)), they have been divided into
core and netApps functionalities. This classification is based on the degree of inter-relationship of
these micro-services, as explained below.

TeraFlow core micro-services are tightly interrelated and collaborate to provide a complete smart
connectivity service. Once a Transport Network Slice request is received, the Slice Manager translates
this request to the Service component. Moreover, the slice request is recorded by the DLT component
in the blockchain. The Service component computes the necessary connectivity services and requests
the necessary network element configuration (e.g., NETCONF, P4, OpenFlow), or interacts with
underlying SDN controllers through the Device Management component. These configurations are
also recorded using the Distributed Ledger component. Policies per flow are computed in Traffic
Engineering (TE) component and verified, and network elements are monitored for anomalous
behaviour in the Automation and Policy Management components. The Context Manager is
responsible for handling the distributed non-relational database that contains all necessary
information (including slice and/or flow requests, network topology, and network elements’
configuration).

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 44 of 81

Figure 5 Overall proposed architecture

TeraFlow netApps consume TeraFlow core micro-services. The TeraFlow netApps provide the
necessary carrier-grade features with a dedicated focus on: load-balancing, cybersecurity, auto-
scaling, self-healing, and inter-domain smart connectivity services. Load-balancing allows the
distribution of flow and slice requests among the micro-services component replicas. The
Cybersecurity component provides AI/ML-based mechanisms to detect network intrusions and
harmful connections, and it provides countermeasures to security incidents. Moreover, the
Cybersecurity component will be able to protect itself against adversarial attacks that try to spoof the
detector’s ML components. The Auto-Scaling component focuses on the autonomous replication of
micro-services to support high numbers of incoming requests. The Self-Healing component monitors
micro-services and per-flow status to apply healing mechanisms (e.g., component restart, flow
redirection) both from a control and a data plane perspective. Finally, the Inter-Domain micro-service
allows the interaction of a TeraFlow OS instance with peer TeraFlow OS instances which manage
different network domains.

6.2. Per Component Template

We have prepared the following template to provide the detailed information per component. This
allows to detail the architectural design of the component and is used in the subsequent sections.

Name:
Objective:
Requirements:
References:
Responsible
(and
collaborators):

Provided
Operations:

(outcome1, outcome2) operation (input1, input2)

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 45 of 81

Internal
models:

6.3. Detailed Architecture

In this section we describe the components, organized as CoreApps and netApps.

Reference to protocol buffers available at: https://gitlab.com/teraflow-h2020/controller

6.3.1. CoreApps

CoreApps involve the following components: Context, Monitoring, Device, Service, Automation,
Policy, Slice, and DLT.

6.3.1.1. Context

Name: Context
Objective: Stateful record of the necessary information.

Provide the external NBI to obtain and manipulate TeraFlow status.
Requirements: Shall include a non-SQL database (e.g., MongoDB).

Internal interface shall be provided in gRPC.
Shall provide NBI for external apps in REST HTTP.

References:
Responsible
(and
collaborators):

CTTC, TID

Provided
Operations:

ListContextIds(Empty) returns(ContextIdList) {}
ListContexts(Empty) returns(ContextList) {}
GetContext(ContextId) returns(Context) {}
SetContext(Context) returns(ContextId) {}
RemoveContext(ContextId) returns(Empty) {}
GetContextEvents(Empty) returns(stream ContextEvent) {}
ListTopologyIds(ContextId) returns(TopologyIdList) {}
ListTopologies(ContextId) returns(TopologyList) {}
GetTopology(TopologyId) returns(Topology) {}
SetTopology(Topology) returns(TopologyId) {}
RemoveTopology(TopologyId) returns(Empty) {}
GetTopologyEvents(Empty) returns(stream TopologyEvent) {}
ListDeviceIds(Empty) returns(DeviceIdList) {}
ListDevices(Empty) returns(DeviceList) {}
GetDevice(DeviceId) returns(Device) {}
SetDevice(Device) returns(DeviceId) {}
RemoveDevice(DeviceId) returns(Empty) {}
GetDeviceEvents(Empty) returns(stream DeviceEvent) {}
ListLinkIds(Empty) returns(LinkIdList) {}
ListLinks(Empty) returns(LinkList) {}
GetLink (LinkId) returns(Link) {}
SetLink (Link) returns(LinkId) {}
RemoveLink(LinkId) returns(Empty) {}

https://gitlab.com/teraflow-h2020/controller

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 46 of 81

GetLinkEvents(Empty) returns(stream LinkEvent) {}
ListServiceIds(ContextId) returns(ServiceIdList) {}
ListServices(ContextId) returns(ServiceList) {}
GetService(ServiceId) returns(Service) {}
SetService(Service) returns(ServiceId) {}
RemoveService(ServiceId) returns(Empty) {}
GetServiceEvents(Empty) returns(stream ServiceEvent) {}

Internal
models:

Topology
Device
Link

Figure 6 is difficult to read, to this means it is available at: https://gitlab.com/teraflow-
h2020/controller/-/blob/develop/proto/uml/context.png

Figure 6 Context data model

6.3.1.2. Monitoring

The initial architecture of the TeraFlow monitoring component is depicted in Figure 7, it is formed by
two main blocks: the Monitoring Core and the Metrics Database. Within the Monitoring Core four
submodules can be found, the Subscription Manager, the Retriever, the Exporter and the
Management Database.

The Retriever is in charge of pulling metrics from all the different monitored components, different
components will implement different protocols/interfaces for the KPI provisioning, for that reason we
have included a set of submodules within the retriever that will connects to the monitored elements
using the required protocols.

All the extracted data will be stored in the Metrics Database, providing dimensional data with time
series and key-value pairs in addition to powerful querying and aggregation mechanisms for accessing
the collected data. The Metrics Database has direct integration with a data visualization tool offering
a wide variety of visualization panels and real time graphics for better observability.

The Exporter submodule will be in charge of serving the collected metrics and KPIs to the different
subscribers. Alongside, the Exporter submodule will also handle the configured alarms for triggering
notifications based on thresholds and ranges.

The Monitoring Component will handle the subscriptions from other components, through the
Subscription Manager submodule located in the Monitoring Core. The Subscription Manager will rely

https://gitlab.com/teraflow-h2020/controller/-/blob/develop/proto/uml/context.png
https://gitlab.com/teraflow-h2020/controller/-/blob/develop/proto/uml/context.png

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 47 of 81

on the Management Database for maintaining the subscription registry in addition to the association
between metrics and KPIs.

The following lines describe a more detailed view of the TeraFlow Monitoring component outlining
the objectives, requirements, provided operations, and internal models.

Figure 7 TeraFlow monitoring component initial architecture

Name: Monitoring
Objective: Provide sufficient information about network metrics (KPIs) and other relevant

metrics to assist the life-cycle automation and high performance of the
components.

Requirements: Shall be able to monitor multiple KPIs.
Shall be able to allow external subscriptions to the notification service.
Shall be able to add, modify and visualize topology, connectivity and
microservice life-cycle metrics.

References:
Responsible(and
collaborators):

ATOS

Provided
Operations:

CreateKpi(GetKpiDescriptor) returns(KpiId)
IncludeKpi (Kpi) returns ()
MonitorKpi (MonitorKpiRequest) returns ()
GetKpiDescriptor (KpiId) returns (KpiDescriptor)
GetStreamKpi (KpiId) returns (stream Kpi)
GetInstantKpi (KpiId) returns (Kpi)

Internal models:
(see for
reference Figure
8)

KpiDescriptor
MonitorKpiRequest
KpiId
Kpi
KpiValue
KpiList

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 48 of 81

Figure 8 Monitoring data model

6.3.1.3. Device Manager

Name: Device
Objective: Provide inventory information and allow to configure and manage specific

devices.
Requirements: Shall be able to handle multiple types of devices.

Shall be able to perform configuration and management
References: OpenConfig, IETF
Responsible
(and
collaborators):

TID, SIAE, INF, VOL, UBI

Provided
Operations:

AddDevice(Device) return (DeviceId)
ConfigureDevice(DeviceConf) return (DeviceId)
DeleteDevice(DeviceId) return (Empty)

Internal
models:

Only provides operations. Data models belong to context

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 49 of 81

Figure 9 Device internal data model

6.3.1.4. Service

Name: Service
Objective: Lifecycle management of multiple TeraFlow services.
Requirements: Provide L3NM, L2NM and ONF Transport API lifecycle management support.
References:
Responsible
(and
collaborators):

CTTC, INF, TID

Provided
Operations:

CreateService (context.Service) returns (context.ServiceId) {}
UpdateService (context.Service) returns (context.ServiceId) {}
DeleteService (context.ServiceId) returns (context.Empty) {}
GetConnectionList(context.ServiceId) returns (context.ConnectionList) {}

Internal
models:

6.3.1.5. Traffic Engineering

Name: Traffic Engineering
Objective: Manage Segment routing LSPs
Requirements: • Create, modify, and delete segment routing LSPs

• Should interact with the terraflow-os-context component to retrieve
device and topology information.

• Should interact with the teraflow-os-device component to configure
compatible hardware to join the PCE.

References:

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 50 of 81

Responsible
(and
collaborators):

STR

Provided
Operations:

RequestLSP(service.Service) returns (service.ServiceState)
UpdateLSP(service.ServiceId) returns (service.ServiceState)
DeleteLSP(service.ServiceId) returns (context.Empty)

Internal
models:

N/A

This component implements the creation, modification, and deletion of segment routing LSPs on the
available hardware, considering the given constraints and the available resources. The constraints
given to the PCE for the calculation of the LSP could be required or desired latency, bandwidth
consumption and hop count, and if the result should be a strict explicit path or a loose one. Figure 10
shows the internal design of the component and how it relates with other TeraFlow components.

Figure 10 Traffic Engineering component

6.3.1.6. Automation (ZTP)

Name: Automation

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 51 of 81

Objective: Automatically add/update a physical or virtual device to/in the network with zero
manual intervention or local configuration, while ensuring that the correct
certificates, software, device configuration parameters, and device pipeline
definition are installed. This component produces role-based device
configuration, which is sent to the teraflow-os-config component via a
southbound configuration protocol (e.g., gNMI or NETCONF).

Requirements: • Shall be able to handle multiple types of devices.
o Requires interactions with the teraflow-os-device component.

• Shall be able to receive and validate a DeviceRole from its northbound
interface
o Such role-based configuration may be received by an external entity,

either automatically or manually by a network operator.
o A gRPC protocol buffer model may describe this API.

• Shall be able to associate a valid DeviceRole with a physical or virtual device
in the network
o This is internal process once a northbound API call is received and before

it is communicated to the configuration component.
• Shall be able to send a DeviceRole to the configuration component through a

southbound API.
o Requires interactions with the teraflow-os-config component.
o A gNMI API may be used for this inter-component communication.

• Shall be able to perform device management.
o Requires interactions with the teraflow-os-control component.
o For table-based devices, a table pipeline setup is required.

• Shall be able to monitor the behaviour of the underlying devices.
References:
Responsible
(and
collaborators):

UBI, UPM, TID, TNOR

Provided
Operations:

ZtpGetDeviceRole(DeviceRoleId) returns (DeviceRole) {}
ZtpGetDeviceRolesByDeviceId(context.DeviceId) returns (DeviceRoleList) {}
ZtpAdd(DeviceRole) returns (DeviceRoleState) {}
ZtpUpdate(DeviceRole) returns (DeviceRoleState) {}
ZtpDelete(DeviceRole) returns (DeviceRoleState) {}
ZtpDeleteAll() returns (DeviceDeletionResult) {}

Internal
models:

The main model of this component is the DeviceRole, which contains additional
internal models, while exploiting models provided by other components (see for
reference Figure 12).

Figure 11 shows the internal design of Automation component.

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 52 of 81

Figure 11 Automation component internal architecture.

Figure 12 Automation data model.

6.3.1.7. Policy Manager

Name: Policy
Objective: Automatically translates high-level policy rules to actual configuration applied to

either physical or virtual devices. A policy rule may generate configuration across
an entire network domain, thus may need to configure multiple devices per policy.
The component architecture is depicted in Figure 13.

Requirements: • Shall be able to handle multiple types of devices.
o Requires interactions with the teraflow-os-device component.

• Shall be able to perform device management.
o Requires interactions with the teraflow-os-device component.
o For table-based devices, a table pipeline setup is required.

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 53 of 81

• Shall be able to receive and validate a PolicyRule from its northbound
interface.
o Such policy rule may be received by an external entity, either

automatically or manually by a network operator.
o A gRPC protocol buffer model may describe this API.

• Shall be able to verify that a given policy matches to a set of flows.
o Requires interactions with the teraflow-os-context component to acquire

the active flows.
• Shall be able to enforce a policy.

o Requires interactions with the teraflow-os-context component to
install/update/delete flows according to a policy.

References:
Responsible
(and
collaborators):

UBI, ODC, UPM, TID, TNOR

Provided
Operations:

PolicyAdd (PolicyRule) returns (PolicyRuleState) {}
PolicyUpdate (PolicyRule) returns (PolicyRuleState) {}
PolicyDelete (PolicyRule) returns (PolicyRuleState) {}
GetPolicy (PolicyRuleId) returns (PolicyRule) {}
GetPolicyByDeviceId (context.DeviceId) returns (PolicyRuleList) {}
GetPolicyByServiceId (service.ServiceId) returns (PolicyRuleList) {}

Internal
models:

The main model of this component is the PolicyRule, which contains additional
internal models, while exploiting models provided by other components (see for
reference Figure 14).

Figure 13 Policy component internal architecture.

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 54 of 81

Figure 14 Policy data model.

6.3.1.8. Slice Manager

Name: Slice
Objective: Handle Transport Network Slice lifecycle
Requirements: [REQ-SLI-01] - [REQ-SLI-06]
References: draft-ietf-teas-ietf-network-slices-03

draft-liu-teas-transport-network-slice-yang
Responsible
(and
collaborators):

(VOL), TNOR, UBI

Provided
Operations:

CreateUpdateSlice (TransportSliceRequest) returns (SliceId) {}
DeleteSlice (TransportSliceRequest) returns () {}

Internal
models:

TransportSliceRequest (see for reference Figure 15).

https://datatracker.ietf.org/doc/draft-liu-teas-transport-network-slice-yang/

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 55 of 81

Figure 15 Slice data model

6.3.1.9. Distributed Ledger

Name: Distributed Ledger
Objective: Provide distributed ledger to record, query, and process relevant data for

network management and detection of compromised edge-devices.
Requirements: [REQ-DLT-01]--[REQ-DLT-04]
References:
Responsible
(and
collaborators):

NEC, CTTC

Provided
Operations:

RecordToDlt (DltRecord) returns (RecordStatus) {}
GetFromDlt (DltRecordId) returns (DltRecord) {}

Internal models: DltRecord, DltStatus (see for reference Figure 16).

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 56 of 81

Figure 16 DLT component data model

6.3.2. netApps

NetApps involve the following components: Optical Centralized Attack Detector, Optical Attack
Mitigation Processor, Attack Inference, L3 Centralized Attack Detector, L3 Distributed Attack Detector,
L3 Fast Attack Mitigation Processor, Compute, and Inter-domain.

6.3.2.1. Optical Centralized Attack Detector

Name: Centralized Attack Detector
Objective: Provide physical layer attack detection at the optical layer and provide a

consolidated attack detection mechanism based on the distributed attack
detector.

Requirements: • Shall consume/subscribe to security-related data from the TeraFlow
Monitoring core component.

• Shall process the optical KPIs (i.e., optical performance monitoring data)
from the monitoring component and generate a security status of the optical
channels.

• Shall report detected attacks to the optical attack mitigation processor
component.

• Shall report security status to the TeraFlow Monitoring core component.
References:
Responsible
(and
collaborators):

CHA

Provided
Operations:

rpc DetectAttack (Empty) returns (Empty) {}
rpc NotifyServiceUpdate (Service) returns (Empty) {}
rpc ReportSummarizedKpi (KpiList) returns (Empty) {}
rpc ReportKpi (KpiList) returns (Empty) {}

Internal
models:

Only provides operations. Data models belong to service, monitoring, and optical
attack mitigation processor.

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 57 of 81

6.3.2.2. Optical Attack Mitigation Processor

Name: Optical Attack Mitigation Processor
Objective: Compute attack remediation solutions based on the physical layer attack

detection performed by other components.
Requirements: • Shall receive attack notifications (e.g., from the optical centralized attack

detection component);
• Shall compute contextual attack responses;
• Shall communicate with the Service, Automation & Policy Manager

components to perform attack countermeasures.
References:
Responsible
(and
collaborators):

CHAL

Provided
Operations:

rpc NotifyAttack (AttackDescription) returns (AttackResponse) {}

Internal
models:

This component contains two models: AttackDescription and AttackResponse
(see for reference Figure 17).

Figure 17 Optical attack mitigator data model

6.3.2.3. Optical Attack Inference

Name: Attack Inference
Objective: Performs the anomaly detection inference based on a set of samples. The

implementation currently uses an unsupervised learning algorithm for anomaly
detection (i.e., DBSCAN) that is used to detect attacks based on optical
performance monitoring data. The design of this component is inspired by the
design of the TensorFlow Serving component.

Requirements: • Shall receive a set of samples (composed of a set of feature values)
representing a monitoring window (defined by the centralized attack
detector) over which the anomaly detection algorithm is run;

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 58 of 81

• Shall return the cluster indices for each one of the samples, where the index -
1 represents an anomaly, and cluster indices greater or equal to zero are
considered normal samples.

References: • DBSCAN Serving
• TensorFlow Serving

Responsible
(and
collaborators):

CHAL

Provided
Operations:

rpc Detect (DetectionRequest) returns (DetectionResponse) {}

Internal
models:

This component contains four models: Metric, Sample, DetectionRequest and
DetectionResponse (see for reference Figure 18).

Figure 18 Attack inference data model

6.3.2.4. L3 Centralized Attack Detector

Name: L3 Centralized Attack Detector
Objective: This component provides attack detection capabilities at the IP layer and a

consolidated attack detection mechanism based on the Distributed Attack
Detector. The Centralized Attack Detector utilizes machine learning algorithms to
classify the input data received from the Distributed Attack Detector component
and sends the predictions to the Attack Mitigator.

Requirements: • Shall consume/subscribe to security-related data from the TeraFlow
Monitoring core component.

• Shall process the summarized flow KPIs from the monitoring component
and generate a consolidated data plane security status.

• Shall report detected attacks to the fast attack mitigation processor
component.

• Shall report security status to the TeraFlow Monitoring core component.

References:
Responsible
(and
collaborators):

UPM, TID, NEC

https://github.com/carlosnatalino/dbscan-serving-python
https://github.com/tensorflow/serving

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 59 of 81

Provided
Operations:

rpc SendInput (L3CentralizedattackdetectorMetrics) returns (Empty) {}
rpc GetOutput (Empty) returns (L3CentralizedattackdetectorModelOutput) {}

Internal
models:

L3CentralizedAttackDetectorModelOutput and
L3CentralizedAttackDetectorMetrics (see for reference Figure 19 and Figure 20).

The L3 Centralized Attack Detector uses the l3_centralizedattackdetector.proto file for the protobuf
messages which correspond to the following models.

Figure 19 L3 Centralized Attack Detector Model Output

Figure 20 L3 Centralized Attack Detector internal data model

6.3.2.5. L3 Distributed Attack Detector

Name: Distributed Attack Detector
Objective: Detect attacks at remote sites (network edge) in a distributed fashion and

classify them. The focus of attack detection in this component is the data plane
attacks by analysing packets.

Requirements: • Shall receive detailed monitoring data from packet processor devices.

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 60 of 81

• Shall generate summarized flow KPIs and send them to
appropriate/subscribed components such as the centralized attack detector.

• Shall report detected attacks to the fast attack mitigation processor
component.

References:
Responsible
(and
collaborators):

UPM, TID

Provided
Operations:

This component does not deploy a gRPC server.

Internal
models:

Only provides operations. Data models belong to service, monitoring, and fast
attack mitigation processor.

6.3.2.6. L3 Attack Mitigator

Name: L3 Attack Mitigation Processor
Objective: This component is responsible for computing viable attack remediation

solutions, depending on the detected attack by other components. It receives
per connection information from the Centralized attack detector. In the current
version, the attack mitigator has only been tailored to communicate correctly
with the Automation component and a placeholder has been crafted in place of
the mitigation strategy (i.e., a print trace).

Requirements: • Shall consume/subscribe to security-related data from the TeraFlow
Monitoring core component.

• Shall receive attack notifications from the centralized and distributed
attack detection components. Currently only receives from the
distributed attack detection component.

• Shall communicate with the Automation & Policy Manager component
to perform attack countermeasures. This is not yet implemented.

References:
Responsible
(and
collaborators):

UPM, TID, NEC

Provided
Operations:

rpc SendOutput (L3AttackmitigatorOutput) returns (context.Empty) {}
rpc GetMitigation (context.Empty) returns (context.Empty) {}

Internal
models:

L3AttackMitigatorOutput (see for reference Figure 21).

The L3 Attack Mitigator uses the l3_attackmitigator.proto file for the protobuf messages which
correspond to the following model.

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 61 of 81

Figure 21 L3 Attack Mitigator Output data model

6.3.2.7. Compute integration

Name: Compute
Objective: It allows ETSI OpenSource MANO (OSM) SDN/WIM connector. It implements the

standard IETF RFC 8466 "A YANG Data Model for Layer 2 Virtual Private Network
(L2VPN) Service Delivery". It provides the endpoints and the necessary details to
request the Layer 2 service. It supports L2VPN lifecycle management.

Requirements: Allow OSM to perform the necessary WIM operations.
References: RFC 8466 (ietf-l2vpn-svc.yang)
Responsible
(and
collaborators):

CTTC

Provided
Operations:

rpc CheckCredentials (context.TeraFlowController) returns
(context.AuthenticationResult) {}
rpc GetConnectivityServiceStatus (context.ServiceId) returns
(context.ServiceStatus) {}
rpc CreateConnectivityService (context.Service) returns (context.ServiceId) {}
rpc EditConnectivityService (context.Service) returns (context.ServiceId) {}
rpc DeleteConnectivityService (context.Service) returns (context.Empty) {}
rpc GetAllActiveConnectivityServices (context.Empty) returns
(context.ServiceIdList) {}
rpc ClearAllConnectivityServices (context.Empty) returns (context.Empty) {}

Internal
models:

Only provides operations. Data models belong to context and service.

6.3.2.8. Inter-Domain

Name: Inter-domain

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 62 of 81

Objective: Enable interaction of a TeraFlow OS instance with peer TeraFlow OS
instances which manage different network domains to create E2E TN
slicing services.

Requirements: [REQ-INT-01] - [REQ-INT-09]
[align more with current capabilities outlined in the workflows]

References: IETF: https://datatracker.ietf.org/doc/rfc8299 ,
https://datatracker.ietf.org/doc/rfc8453/
https://datatracker.ietf.org/doc/draft-ietf-teas-ietf-network-slices/02/

Responsible (and
collaborators):

TNOR, NTNU, CTTC

Provided
Operations:

• Authenticate (context.TeraFlowController) returns
(context.AuthenticationResult) {}

• LookUpSlice(slice.TransportSliceRequest) returns (SliceResponse) {}
//Slice component or from interdomain component

• OrderSliceFromCatalog(slice.TransportSliceRequest) returns
(SliceResponse) {}

• CreateSliceAndAddToCatalog(slice.TransportSliceRequest) returns
(SliceResponse) {}

Internal models: Only provides operations. Data models belong to context and service.

The inter-domain component allows the interaction of a TeraFlow OS instance with peer TeraFlow OS
instances which manage different network domains. The inter-domain communication services can
be classified into two types: inter-domain between administrative domains vs. inter-domain between
technology domains (within one administrative domain), as shown in Figure 23. Depending on the
type, different governance models are needed before defining the micro-services and corresponding
requirements. In this section, we focus on Type I (Figure 23).

To achieve objectives, the proposed inter-domain component leverages existing data models related
to the context and slice components. The main operations include the authentication required prior
to the information exchange between inter-domain components as well as interaction with the slice
catalogue. Interactions with the slice catalogue include querying the catalogue (LookUpSlice),
requesting the instantiation of an existing slice (OrderSliceFromCatalog), and the creation of a new
slice as well as its inclusion into the catalogue (CreateSliceAndAddToCatalog).

Figure 22 Different types of inter-domain communication.

https://datatracker.ietf.org/doc/rfc8299
https://datatracker.ietf.org/doc/rfc8453/
https://datatracker.ietf.org/doc/draft-ietf-teas-ietf-network-slices/02/

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 63 of 81

6.3.3. Cloud Orchestrator Features

In this section, we present several features that are not provided by any component, but they are
related to the selected technology (Kubernetes). These features are: auto-scaling, self-healing, and
load balancing.

6.3.3.1. Auto-Scaling

The Auto-Scaling component focuses on the autonomous replication of micro-services to support high
amount of load in terms of incoming requests.

The Horizontal Pod Autoscaler (HPA) automatically scales the number of Pods in a Pod deployment
based on observed metrics (e.g., CPU utilization). Through integration with external mechanisms, it
can also support autoscaling using custom metrics support, such as application-provided metrics.

6.3.3.2. Self-Healing

The Self-Healing component monitors micro-services and per-flow status to apply healing mechanisms
(e.g., component restart, flow redirection) both from a control and a data plane perspective.

We will use two features from Kubernetes for providing self-healing mechanisms: liveness and
readiness probes. The kubelet uses liveness probes to know when to restart a container. The kubelet
uses readiness probes to know when a container is ready to start accepting traffic. Both features will
be included in each Pod by usage of the Google Health grpc [GRPC21].

6.3.3.3. Load Balancing

Load-balancing allows the distribution of flow and slice requests among the micro-services component
replicas.

Kubernetes implements load balancing as a load distribution mechanism. It uses two methods of load
distribution, which are easy to operate through the kube-proxy feature.

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 64 of 81

7. Data Models
This section describes the selected data models to be used as both external (including NorthBound
and SouthBound) and internal interfaces.

7.1. External Interfaces and Data Models

The external interfaces are the ones offered to be consumed from external components of TeraFlow
and typically use NETCONF or RESTCONF protocols.

7.1.1. NorthBound Interfaces (NBI)

Several interfaces are proposed to be used as NorthBound Interfaces, being summarized in L3/L2
network models, Traffic Engineering (TE) tunnels, and IETF Transport Network Slices.

7.1.1.1. IETF L3/L2 Network Model

Network Models [BAR21a] are used to interact with the network controllers. Such models are used to
instantiate the service in the network. Network models are used to provide an intermediate level of
abstraction between what the customer requires, and the configuration implemented in the
underlying network nodes. It provides the notion of a network service, which really is a set of
configurations in the devices that happen to realize the customer needs. It is important to highlight
that the services of the network models only exist in the controller. In the network nodes, protocols,
routing instances, tunnels, routing profiles, access control lists, etc., for example, are configured to
implement such service. Also, note that due to the separation of roles, the assignment of resources,
for example, selecting the right interface for a customer or choosing an address or taking the decision
of giving or not certain bandwidth is a role of the service orchestration layer. The network models are
a good base to define the Resource-Facing services used by OSS applications.

The L3NM model provides a network-centric view of L3VPN services [BARb]. L3NM is meant to be used
by a Network Controller to derive the configuration information that will be sent to relevant network
devices.

The L2NM YANG module provides representation of the Layer 2 VPN Service from a network
standpoint [BAR21c]. The module is meant to be used by a Network Controller to derive the
configuration information that will be sent to relevant network devices.

7.1.1.2. IETF Traffic Engineering Tunnels

TE [SAA21] is a YANG data model for the configuration and management of Traffic Engineering (TE)
tunnels, Label Switched Paths (LSPs), and interfaces have been part of the TEAS working group in the
IETF. The model is divided into YANG modules that classify data into generic, device-specific,
technology agnostic, and technology-specific elements.

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 65 of 81

7.1.1.3. IETF Transport Network Slice

A transport network slice will consist of a set of endpoints (e.g., CEs), a connectivity matrix between
subsets of these endpoints service level behaviours requested for each sender on the connectivity
matrix [FAR21]. The connectivity between the endpoints might be point-to-point, point-to-multipoint
or multipoint-to-multipoint. Often these slices will be used to satisfy network behaviour defined in a
Service Level Agreement (SLA) [FAR21].

Several data models might be considered, but our first implementation and preliminary results might
be obtained from [LIU21].

7.1.2. SouthBound Interfaces (SBI)

In this section, the provided SouthBound interface are discussed. More information is provided in D3.1
in Device component architecture description.

7.1.2.1. ONF Transport API Driver

We consider the use of ONF Transport API 2.1 to interact with Open Line System (OLS) Controllers in
charge of managing underlying optical transport networks.

7.1.2.2. ONF TR-532 Microwave

We consider the use of a REST API to interact with a SDN Microwave (MW) Domain Controller, which
has a network-level view of the underlying MW domain. The SDN MW controller interacts with
microwave network elements using ONF TR-532 data models. Details are provided in D3.1.

7.1.2.3. OpenConfig

Routers will be configured and controlled using OpenConfig parameters that are implemented in
NETCONF server. It will be supported by DRX-30 IP/MPLS routers.

7.1.2.4. ONOS P4

TeraFlow embraces the ONF initiatives around P4 by integrating ONOS, Stratum, and P4 into the
TeraFlow ecosystem. In D3.1, we describe how the TeraFlow SDN controller will cooperate with ONOS
to manage next-generation SDN whiteboxes based on the P4 paradigm.

7.2. Internal Data Models

Google Remote Procedure Calls (gRPC) [BRE19] is a protocol based on HTTP/2 as a transport protocol
and it uses protocol buffers encodings for transported messages. As it is based on HTTP/2 transport
protocol and uses byte-oriented encoding, it introduces low latency. gRPC has been used in highly
scalable and distributed systems. It has been decided to be used as internal protocol in TeraFlow SDN
Controller. Data models for gRPC are described using Protocol Buffers.

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 66 of 81

Protocol Buffers are a language-neutral, platform-neutral extensible mechanism for serializing
structured data [PRO21]. They allow to model the data structures in a similar manner as in YANG. Its
encoding in byte-oriented messages increases the efficiency compared to XML/JSON encodings. An
Open-Source framework is provided to handle protocol buffers in multiple languages, such as python,
Go, C++, Java, Erlang.

Figure 23 provides an example of a topology information model. In this example, a topology service is
described, and it offers a GetTopology RPC that provides a topology structure. Each structure is
described in message keyword. Topology message provides a list of node messages (a list is declared
using repeated keyword) and a list of link messages. A node message includes an identifier and a list
of port messages. Port messages include a port identifier and a layer protocol name. Link messages
include a link identifier and references to source and target nodes and ports.

Figure 23 Example of protocol buffer

All protocol buffers are part of TeraFlow SDN source code, and they are available at:
https://gitlab.com/teraflow-h2020/controller/-/tree/develop/proto

https://gitlab.com/teraflow-h2020/controller/-/tree/develop/proto

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 67 of 81

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 68 of 81

8. Use Case Workflows
In this section, we provide several specific workflows to demonstrate the interaction among multiple
components, as well as the underlying infrastructure devices, other controllers, etc.

8.1. L3VPN Service Provisioning

To configure a L3VPN, the TeraFlow SDN Controller first creates an instance of the VPN service,
specifying attributes, import and export profiles, and the list of VPN endpoints that participate in the
service. In a second step, the TeraFlow SDN Controller communicates with each of the network
elements hosting the endpoints, such as virtual or physical routers, and for each of them:

- configures a VRF
- attaches (logical or physical) interfaces to the VRF
- configures the routing protocols to enable PE-PE and PE-CE communications over the relevant

interfaces
- configures any other additional parameters (QoS, etc).

Figure 24 shows an example of this workflow.

Figure 24 L3VPN Service Provisioning sequence diagram

8.2. Monitoring

The monitoring component collects metrics from the different components and devices, producing
valuable data that can be used by other services and components to improve service performance,
detect anomalies, or just for analytic purposes.

Figure 25 depicts an exemplary workflow for monitoring a generic device. This workflow involves
different entities: the SDN Agent that is the generic device that will be monitored; the Context
component that stores the configuration and attributes of the network elements managed in
TeraFlow; the Device component that interfaces with the monitored devices; the monitoring
component with its databases (MgmtDB and MetricsDB), the data visualization platform of the
monitored data and the user that visualizes these data.

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 69 of 81

In first place, the Monitoring component starts to listen the Context Management service about new
events in the devices, these events will be accessed in the queue EventQueue and will be translated
to KpiRequests. Then, the Monitoring service process and registers each KpiRequest as a KPI in the
Management DB and just after that, requests to start monitoring each KPI sending a MonitorDeviceKpi
to the Device component. The Device service interfaces between the TeraFlow OS and the SDN agents,
retrieving the information from the end devices and sending the samples to the Monitoring service
through the IncludeKpi. Subsequently, the received samples are introduced in the MetricsDB by the
Monitoring service to be lately accessed and visualized through the Data Viewer platform.

Figure 25 Monitoring sequence diagram

8.3. Service Restoration

Upon the deployment of a service, the TeraFlow controller invokes service monitoring routines which
allow the service owner to select specific KPIs, subscribe to these KPIs, thus retrieve relevant
monitoring information. To avoid manual effort upon the reception of an out-of-bounds performance
metric for a given service, monitoring information can also be streamed towards an automated service
restoration module, as shown in Figure 26. This module queries the monitoring service to collect a set

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 70 of 81

of KPIs for a given service (also through the device service). Then, an internal routine of the automated
service restoration module checks the values of the retrieved KPIs against a set of “expected” KPI
boundaries. If an out-of-bounds KPI is detected, the service restoration module performs the
necessary service update, while ensuring that the affected devices are reconfigured via the device
service.

Figure 26 Service restoration sequence diagram.

8.4. Traffic Engineering

Figure 27 shows the different phases of the TE component: Building Traffic Engineering Database
(TED), Registering PCE, Requesting Label Switched Paths (LSP) and Deleting LSP.

The TED is constructed by requesting the topological information to Context component and then
building the TED internally in TE component. Later, the TE component requests to Context the
available devices and it registers as PCE to each router device, that acts as PCC.

An SR LSP might be requested from Service component, resulting in a best path computation, and
later triggering of the LSP to the routers. Finally, the SR LSP might be deleted from Service component
and the Delete LSP request is forwarded to the routers.

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 71 of 81

Figure 27 Traffic Engineering Sequence Diagram

8.5. Automation

Figure 28 visualizes the necessary steps for adding a new device under the management umbrella of
the TeraFlow SDN controller in a fully automated manner. The process begins with the Policy
component issuing an “AddDevice” RPC to the Device component. This method initiates a connection
with the requested device, and if successfully connected, the device driver obtains the device
configuration. This configuration is turned into a DeviceConfig object and pushed to the Context
database. Upon success, a “DEVICE_ADD” event is generated, notifying that a new device is associated
with a TeraFlow device driver plugin. As a result, the Context component generates a notification
through the “Events’ API”. This event is received by the Automation component, thus the ztpAdd RCP
is automatically triggered as shown in Figure 28. First, the Automation component requests the new
Device object from the Context database, which in turn results in a “getDevice” call to the Device
component. Then, if this device is not already configured, the Automation component requests this
device’s initial configuration parameters by issuing a “getInitialConfig” RPC to the Device component
through the Context component. Upon the reception of an updated DeviceConfig object, the
Automation component loops through the configuration entries of its local object and updates the
relevant entries according to the newly fetched DeviceConfig object. Next, the updated device object

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 72 of 81

is pushed to the Device component and stored to the Context database via a “configureDevice” RPC.
Upon success, the Automation component flips the DeviceStatus bit of the Device object to
“ENABLED” and the respective ZTPDeviceState to “CREATED”, while also generating relevant events.
Finally, these events can be consumed by other TeraFlow OS components to begin e.g., monitoring
routines for this device. Note that, if the DeviceStatus of the newly arrived device is already ENABLED,
the device is already provisioned, thus no action is taken by the ztpAdd RPC, while a relevant warning
is issued.

Figure 28 Zero-Touch Provisioning of a new device into TeraFlow OS.

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 73 of 81

8.6. Optical and L3 Centralized and Distributed Attack Detection

The centralized and distributed attack detection and mitigation workflow will provide TeraFlow with
a continuous assessment of the security status of optical and IP services.

The distributed attack detector will be placed at remote sites, e.g., central offices, edge datacentres,
and will receive IP traffic monitoring (e.g., by traffic mirroring) from co-located packet processors. The
monitoring of IP traffic is expected to generate considerable traffic between the packet processors
and the respective distributed attack detector. By deploying one instance of this component at each
remote site, TeraFlow avoids transmitting the monitoring traffic across the network, reducing the
network load, and potentially reducing the attack detection time. Once an attack is detected, the
distributed attack detector notifies the attack mitigation process, providing a comprehensive
characterization of the attack properties. Periodically, the distributed attack detector will also report
summarized KPIs to the centralized attack detector with the purpose of enabling a holistic security
assessment. This approach of sending summarized KPIs also removes the need to sending complete
information about IP traffic to the centralized controller.

The centralized attack detector will consolidate the information from multiple instances of the
distributed attack detector with the optical performance monitoring performed over optical services.
This will enable the centralized attack detector to monitor the optical services for physical-layer
attacks, while also having a view on the security status of IP traffic. Based on the summarized KPIs
received from the distributed attack detector, the centralized attack detector can also perform attack
detection on the IP layer by using the consolidated IP summarized KPIs. Upon an attack detection, the
centralized attack detector sends an attack description to the fast attack mitigation processor for it to
compute a mitigation for the attack.

Figure 29 Centralized and distributed attack detection and mitigation

The fast attack mitigation processor, upon receiving an attack notification, is responsible for
computing a viable attack mitigation, depending on the detected attack. For instance, if the attack
detected is on the IP layer, one possible mitigation action is to block the flow that is carrying the
malicious traffic. Another example is in the case of an optical physical layer attack, where a possible

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 74 of 81

approach would be to establish a new optical service avoiding the current spectrum and/or
links/nodes. The realization of the attack mitigation strategy will be coordinated with the Automation
component, which will be responsible for performing the necessary actions across the devices in the
network to make sure that the mitigation takes place.

In an initial implementation, the optical and the L3 workflows presented in Figure 29 will be
implemented separately, i.e., the optical workflow will have its own components and the same for the
IP/L3 workflow. This design decision is reflected in Section 6.3.2, where the component architecture
for the optical and L3 workflows are described. In a future iteration, the centralized attack detector
component for optical and L3 will be integrated to enable a cross-layer security assessment
framework.

8.7. DLT and Smart Contracts

TeraFlow will deliver a permissioned distributed ledger that utilizes blockchains for network
management. It will use blockchain technology to provide a trustworthy and resilient platform for
storing, querying, and processing critical data about network resources and services owned and
governed by different network entities. It will be privacy aware as well as transparent, resulting in an
open, traceable, and fair sharing of network resources and services between stakeholders.

The use of blockchains replaces centralized network management consisting of conventional database
management systems. Major advantages are the elimination of trusted third parties that maintain the
databases with single point of failures, and data provenance including data immutability and
traceability.

Smart contracts provide a universal basis to automate, simplify, and secure network management
tasks that involve possibly sensitive data from multiple stakeholders of the network. Trust and multi-
tenancy are improved in the SDN controllers by introducing novel security mechanisms through the
usage of smart contracts and secure consensus algorithms. Network and device data is not stored and
processed in a central location; instead, a blockchain, which stores the data and the operations on the
data, is copied and spread across multiple nodes, and each node updates its blockchain to reflect a
requested change, often by executing a smart contract.

The DLT operations are depicted in the sequence diagram in Figure 30. Services perform dual functions
of reading from the DLT component and writing to the DLT component. The GetDLTstatus operations
retrieves information from the blockchain and RecordtoDLT operation is used to write to the
blockchain and the recorded information is shared among the DLT network components.

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 75 of 81

Figure 30 DLT sequence diagram

8.8. Compute integration

Figure 31 illustrates the integration of the Compute component of the Teraflow OS to interact with an
external NFV Orchestrator, e.g., based on an OSM implementation. Specifically, it is depicted the
integration to allow the NFV orchestrator requesting the creation of connectivity services over an
underlying transport infrastructure (WAN) controlled/programmed by the SDN controlled offered by
the Teraflow OS. By doing this, remote virtualized network functions (hosted at different cloud
premises) and associated to a specific network service can be interconnected over the WAN. This
integration between the NFV Orchestrator and the Compute component is supported over a defined
REST API. Besides the creation of the network connectivity services, the API also supports other
operations for handling the complete lifecycle management of such connections, i.e., deletion or
update of active network services).

For the operation of creating network connectivity service, different steps constitute the resulting
workflow between the NFV Orchestrator and the Compute component. The step labelled by 1) is
bound to the request sent by the NFV Orchestrator (OSM) via a POST message to trigger the
connectivity service (i.e., create_connectivity_service()). This is referred to as the creation of the vpn
service. The POST message carries a set of required JSON-encoded objects, namely, the vpn_id (which
contains an uuid), the vpn_svc_type (set to virtual private wire service, vpws), the svc_topo (set to
any-to-any) and the customer-name (carrying OSM). After processing this message, the Compute
component creates an entry for that network connectivity service. To unambiguously refer to that
entry a service identifier (serviced) is created and set to the received vpn_id. Next, the Compute
component responds to the NFV Orchestrator that the registration of the vpn service succeeded (i.e.,
step labelled by 2))

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 76 of 81

Figure 31 NFV Service deployment using WIM

Next, the OSM sends another POST message in step 3) with the required information about the
connection service and its vpn attachment endpoints. This entails specifying the connection_point (i.e.,
vlan), and the endpoints using the bearer and the site. These network connectivity service details are
then updated at the Compute component and used to construct the gRPC createService message (step
4). Once the network connectivity service is successfully established by other Teraflow OS components
(step 5)), the Compute component responds to the NFV Orchestrator informing that the network
connectivity service is active, i.e., step 6).

8.9. Inter-Domain Services

Key functions of the inter-domain component are related to service lifecycle management, including
the preparation and activation of a service as well as its modification during run time. Furthermore,
monitoring of service KPIs across domains ensures that end-to-end requirements are met.

Figure 32 displays the workflow regarding service preparation and activation. The workflow is initiated
by a customer which can be any entity consuming TeraFlow services such as the OSS or other
management domains including end-to-end service management. The customer’s request is handled
by the slice component which forwards the end-to-end transport slice request to the inter-domain
component. The inter-domain component, in turn, decomposes the end-to-end transport slice into
per-domain sub-slices and requests their creation in the respective TeraFlow domains through the
corresponding inter-domain components. This inter-domain communication is performed in a secure
manner by mutual authentication prior to the exchange of sub-slice requests. In case an appropriate
sub-slice can be provided, the remote inter-domain component informs the requesting inter-domain
component and the latter can order the slice. Otherwise, the creation of a corresponding slice is
initiated alongside its insertion into the catalogue and establishment of connectivity, triggering
interaction with slice and service components, respectively. Finally, the same procedure of sub-slice

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 77 of 81

creation and connection establishment is performed at the local TeraFlow domain (domain #A in the
figure).

Figure 32 Inter-domain service preparation and activation

Figure 33 outlines the workflow of modifying a service. The process is triggered by an inter-domain
component which sends a service modification request to a remote inter-domain component. Upon
receiving this request, the remote inter-domain component evaluates whether the modification (e.g.,
an increase of bandwidth) can be supported. Depending on the outcome of the evaluation, the
modification is either carried out by propagating the request to the involved slice and service
components, or the requesting inter-domain component is informed about the negative outcome.

Figure 33 Inter-domain service modification

Finally, the inter-domain component leverages the monitoring service to obtain service- and/or
device-level KPIs on a per-domain basis to ensure that end-to-end requirements are met. To this end,

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 78 of 81

the inter-domain component subscribes to the relevant KPIs from the monitoring component in its
domain and synchronizes them with remote inter-domain components. This process is summarized in
Figure 34.

Figure 34 Inter-domain service synchronization/monitoring

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 79 of 81

9. Conclusions and Next Steps
This deliverable includes the methodology to be applied in TeraFlow, initial use case definitions,
requirement elicitation, the draft architecture to be used in WP3 and WP4 for the release of TeraFlow
OS v1. In addition, data models for the different components and interfaces are also detailed and use
case-specific workflows have been described.

This deliverable includes all the necessary architecture definitions and detailed design descriptions to
provide the initial TeraFlow features. TeraFlow follows an agile methodology to produce three major
software releases: v1 will be released at M12, v2 will be released at M24, and v2.1 will be released at
M30. These releases will cover the length of the technical work packages (WP3 and WP4).

For a detailed view of the performed work and further work of the different presented components,
please refer to D3.1 and D4.1, which provide more technical details and preliminary obtained results
of the different components. Also, the expected work for Y2-Y3 is included.

To support software development and the ability to make releases with minimal impact on the running
services, TeraFlow will adopt a CI/ CD strategy described in D5.1. The major software releases will
deliver the main functionality, while the minor releases will provide bug fixes and possibly additional
features required by the currently operating experiments.

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 80 of 81

References
[BAR21a] S. Barguil, O. González-de-Dios, V. López, K. Pardini, R. Vilalta, Automation of Network
Services for the Future Internet , Chapter in Design Innovation and Network Architecture for the
Future Internet, published by IGI Global, April 2021.ISB: 9781799876465.

[BAR21b] S. Barguil, et al., A Layer 3 VPN Network YANG Model, IETF draft, October 2021.
https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-l3sm-l3nm-18, Accessed: 2021-12-28

[BAR21c] S. Barguil, et al., A Layer 2 VPN Network YANG Model, IETF draft, November 2021.
https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-l2nm-12, Accessed: 2021-12-28

[BER08] A. Bergek, S. Jacobsson, B. Carlsson, S. Lindmark and A. Rickne, “Analyzing the functional
dynamics of technological innovation systems: A scheme of analysis,” Research Policy, vol. 37, pp.
407-429, 2008.

[BRE19] E. Breverman et al., Optical Zero Touch Networking—A Large Operator Perspective, OFC
2019.

[EC21] European Comission, “5G supply market trends – Final Report,” European Commission,
Brussels, 2021.

[FAR21] Farrel, A., Gray, E., Drake, J., Rokui, R., Homma, S., Makhijani, K., Contreras, L. M., and J.
Tantsura, "Framework for IETF Network Slices", IETF draft TEAS working group, August 2021.
https://datatracker.ietf.org/doc/draft-ietf-teas-ietf-network-slices, Accessed: 2021-12-28

[GAW14] A. Gawer and M. A. Cusumano, “Industry Platforms and Ecosystem Innovation,” Journal of
Product Innovation Management, vol. 31, no. 3, pp. 417-433, 2014.

[GRPC21] Health checking your gRPC servers on GKE,
https://cloud.google.com/blog/topics/developers-practitioners/health-checking-your-grpc-servers-
gke, Accessed: 2021-12-28

[Hal21] H. K. Hallingby, S. Fletcher, V. Frascolla, A. Gavras, I. Mesogiti and F. Parzysz, “5G
ecosystems,” 5G Infrastructure Association, 2021.

[HEK11] M. Hekkert, S. Negro, G. Heimeriks and R. Harmsen, “Technological Innovation System
Analysis – a manual for analysts,” Universiteit Utrecht, Utrecht, 2011.

[LIU21] IETF Network Slice YANG Data Model, https://datatracker.ietf.org/doc/draft-liu-teas-
transport-network-slice-yang/, Accessed: 2021-12-28

[MUS21] “MUST IP SDN Controller SBI Technical Requirements”, Telcom Infra Project (TIP),
https://cdn.brandfolder.io/D8DI15S7/as/mfbj6nm7w38xnbvrmcnbp9t6/MUST-IP-Controller-SBI-
Requirements-Document-v10_FINAL_VERSION_WEBSITE.pdf, Accessed: 2021-12-28.

[PRO21] Protocol buffers, https://github.com/protocolbuffers/protobuf, Accessed: 2021-12-28.

[RFC8466] A YANG Data Model for Layer 2 Virtual Private Network (L2VPN) Service Delivery, IETF RFC
8466.

https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-l3sm-l3nm-18
https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-l2nm-12
https://datatracker.ietf.org/doc/draft-ietf-teas-ietf-network-slices
https://cloud.google.com/blog/topics/developers-practitioners/health-checking-your-grpc-servers-gke
https://cloud.google.com/blog/topics/developers-practitioners/health-checking-your-grpc-servers-gke
https://datatracker.ietf.org/doc/draft-liu-teas-transport-network-slice-yang/
https://datatracker.ietf.org/doc/draft-liu-teas-transport-network-slice-yang/
https://cdn.brandfolder.io/D8DI15S7/as/mfbj6nm7w38xnbvrmcnbp9t6/MUST-IP-Controller-SBI-Requirements-Document-v10_FINAL_VERSION_WEBSITE.pdf
https://cdn.brandfolder.io/D8DI15S7/as/mfbj6nm7w38xnbvrmcnbp9t6/MUST-IP-Controller-SBI-Requirements-Document-v10_FINAL_VERSION_WEBSITE.pdf
https://github.com/protocolbuffers/protobuf

D2.1 - Preliminary requirements, architecture design, techno-economic studies,
and data models

© 2021 - 2023 TeraFlow Consortium Parties Page 81 of 81

[SAA21] T. Saad, et al., A YANG Data Model for Traffic Engineering Tunnels, Label Switched Paths and
Interfaces, IETF draft, https://datatracker.ietf.org/doc/draft-ietf-teas-yang-te/, Accessed: 2021-12-
28.

[TR547] “TR-547 – TAPI v2.1.3 Reference Implementation Agreement v1.1”, Open Networking
foundation (ONF), https://wiki.opennetworking.org/download/attachments/259719184/TR-547-
TAPI_ReferenceImplementationAgreement_v1.1.zip?version=2&modificationDate=1639671964
711&api=v2, Accessed: 2021-12-28.

https://datatracker.ietf.org/doc/draft-ietf-teas-yang-te/
https://wiki.opennetworking.org/download/attachments/259719184/TR-547-TAPI_ReferenceImplementationAgreement_v1.1.zip?version=2&modificationDate=1639671964711&api=v2
https://wiki.opennetworking.org/download/attachments/259719184/TR-547-TAPI_ReferenceImplementationAgreement_v1.1.zip?version=2&modificationDate=1639671964711&api=v2
https://wiki.opennetworking.org/download/attachments/259719184/TR-547-TAPI_ReferenceImplementationAgreement_v1.1.zip?version=2&modificationDate=1639671964711&api=v2

	Executive Summary
	List of Figures
	List of Tables
	Abbreviations
	1. Introduction
	2. Methodology
	3. Use Cases
	3.1. Inventory
	3.1.1. Hardware Inventory Collection
	3.1.2. Logical Inventory Collection
	3.1.3. Host tracking

	3.2. Topology
	3.2.1. Context & Service Endpoints Discovery
	3.2.2. Single Layer Topology
	3.2.3. Multi-Layer Topology
	3.2.4. Multi-Domain Service Endpoint and Topology

	3.3. Service
	3.3.1. Service Lifecycle
	3.3.2. End-to-End Service Lifecycle

	3.4. Transport Network Slicing
	3.4.1. Slice Life-Cycle Management
	3.4.2. Vertical Dedicated Network
	3.4.3. Slice Isolation

	3.5. Monitoring
	3.5.1. Events Collection and Intelligent Grouping

	3.6. Traffic Engineering
	3.6.1. PCEP for Segment Routing

	3.7. Automation
	3.7.1. Service Restoration
	3.7.2. Service Optimization
	3.7.3. Protected Services
	3.7.4. Zero Touch Provisioning
	3.7.5. NOS Upgrade

	3.8. Policy Enforcement
	3.9. ML-Based Security
	3.9.1. Detection At Edge Nodes
	3.9.2. Detection At The Cybersecurity Component
	3.9.3. Adversarial Attacks to Resilient ML

	3.10. Distributed Ledger and Smart Contracts
	3.10.1. Wholesale of Transport Resources
	3.10.2. Resource Allocation Forensic Analysis

	3.11. Compute Integration
	3.11.1. NFV Infrastructure Point of Presence (NFVI-PoP) interconnection

	3.12. Inter-Domain
	3.12.1. Inter-domain connectivity services

	3.13. Scenario – Use Case Matrix

	4. Business Model and Ecosystem Analysis
	4.1. TeraFlow OS and transport network market growth
	4.2. Diffusion of TeraFlow OS ecosystem
	4.3. Roles in TeraFlow OS ecosystem
	4.4. Interdependencies in TeraFlow OS ecosystem
	4.5. Enabling and blocking mechanisms for TeraFlow OS ecosystem
	4.5.1. Further work with TeraFlow OS ecosystem

	5. Requirements for the TeraFlow SDN Controller
	5.1.1. Inventory
	5.1.2. Topology
	5.1.3. Service
	5.1.4. Monitoring
	5.1.5. Traffic Engineering
	5.1.6. Automation
	5.1.7. Policy
	5.1.8. Cybersecurity
	5.1.9. Distributed Ledger and Smart Contracts
	5.1.10. Transport Network Slicing
	5.1.11. Compute
	5.1.12. Inter-Domain
	5.1.13. TeraFlow SDN Controller Security
	5.2. Non-Functional Requirements
	5.2.1. Performance
	5.2.2. Usability
	5.2.3. Scalability
	5.2.4. Security
	5.2.5. Reliability
	5.2.6. Portability

	6. Proposed Architecture
	6.1. Overall Architecture
	6.2. Per Component Template
	6.3. Detailed Architecture
	6.3.1. CoreApps
	6.3.1.1. Context
	6.3.1.2. Monitoring
	6.3.1.3. Device Manager
	6.3.1.4. Service
	6.3.1.5. Traffic Engineering
	6.3.1.6. Automation (ZTP)
	6.3.1.7. Policy Manager
	6.3.1.8. Slice Manager
	6.3.1.9. Distributed Ledger

	6.3.2. netApps
	6.3.2.1. Optical Centralized Attack Detector
	6.3.2.2. Optical Attack Mitigation Processor
	6.3.2.3. Optical Attack Inference
	6.3.2.4. L3 Centralized Attack Detector
	6.3.2.5. L3 Distributed Attack Detector
	6.3.2.6. L3 Attack Mitigator
	6.3.2.7. Compute integration
	6.3.2.8. Inter-Domain

	6.3.3. Cloud Orchestrator Features
	6.3.3.1. Auto-Scaling
	6.3.3.2. Self-Healing
	6.3.3.3. Load Balancing

	7. Data Models
	7.1. External Interfaces and Data Models
	7.1.1. NorthBound Interfaces (NBI)
	7.1.1.1. IETF L3/L2 Network Model
	7.1.1.2. IETF Traffic Engineering Tunnels
	7.1.1.3. IETF Transport Network Slice

	7.1.2. SouthBound Interfaces (SBI)
	7.1.2.1. ONF Transport API Driver
	7.1.2.2. ONF TR-532 Microwave
	7.1.2.3. OpenConfig
	7.1.2.4. ONOS P4

	7.2. Internal Data Models

	8. Use Case Workflows
	8.1. L3VPN Service Provisioning
	8.2. Monitoring
	8.3. Service Restoration
	8.4. Traffic Engineering
	8.5. Automation
	8.6. Optical and L3 Centralized and Distributed Attack Detection
	8.7. DLT and Smart Contracts
	8.8. Compute integration
	8.9. Inter-Domain Services

	9. Conclusions and Next Steps
	References

