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Abstract 

This document provides the first release of the proposed use cases, requirements, architecture design, 
business models and data models for the TeraFlow OS. It is aligned with the features and data models 
that will be present in TeraFlow OS release 1. 

[End of abstract]  
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EXECUTIVE SUMMARY 
This deliverable includes the methodology to be applied in TeraFlow, initial use case definitions, 
requirement elicitation, the draft architecture to be used in WP3 and WP4 for the release of TeraFlow 
OS v1. Furthermore, data models for the different components and interfaces are also detailed, use 
case-specific workflows are described, and next steps and conclusions are provided. 

In the first section, the methodology is presented. It includes the agile approach proposed for the 
development of TeraFlow, which focuses on use case definition and requirement elicitation. TeraFlow 
will produce three releases of the software and an uptake of Continuous Integration/Continuous 
Deployment (CI/CD) principles.  

Then we present the proposed use cases, which will help identify the specific requirements. They are 
classified based on the following topics: inventory, topology, service, transport network slicing, 
monitoring, traffic engineering, automation, policy enforcement, Machine Learning (ML)-based 
security, distributed ledger and smart contracts, compute integration and inter-domain. These use 
cases provide a starting point for drafting the behaviour of the TeraFlow Software Defined Networking 
(SDN) controller. Not all use cases will be demonstrated, but specific ones will be provided within each 
of the different proposed scenarios. 

Business model analysis for the TeraFlow SDN controller is also essential, as we need to design a valid 
business model for the controller. An initial draft of the value proposition is being explored, and we 
present the proposed methodology. 

After that, the TeraFlow functional and non-functional requirements are presented. They serve as the 
basis for the TeraFlow SDN controller Year 1 release. The functional requirements are classified into 
components, and the non-functional requirements include performance, usability, scalability, 
reliability, and portability. 

The proposed architecture based on a micro-service architecture is presented. Each component is 
detailed through a template that describes the main functionality, the proposed operations for the 
component, and the suggested internal data models. A protocol buffer is described for each 
component to model the services.  

Later, data models are described, including external interfaces (northbound and southbound) and 
internal data models. Finally, sequence diagrams are presented to depict micro-service interactions. 

In conclusion, we present the planned next steps for TeraFlow. 

  



D2.1 - Preliminary requirements, architecture design, techno-economic studies, 
and data models 

 

© 2021 - 2023 TeraFlow Consortium Parties  Page 4 of 81 

Table of contents 
Executive Summary ................................................................................................................................. 3 

List of Figures .......................................................................................................................................... 7 

List of Tables ........................................................................................................................................... 8 

Abbreviations .......................................................................................................................................... 9 

1. Introduction .................................................................................................................................. 12 

2. Methodology ................................................................................................................................. 13 

3. Use Cases ...................................................................................................................................... 14 

3.1. Inventory ............................................................................................................................... 14 

3.1.1. Hardware Inventory Collection ..................................................................................... 14 

3.1.2. Logical Inventory Collection .......................................................................................... 14 

3.1.3. Host tracking ................................................................................................................. 15 

3.2. Topology................................................................................................................................ 15 

3.2.1. Context & Service Endpoints Discovery ........................................................................ 15 

3.2.2. Single Layer Topology ................................................................................................... 15 

3.2.3. Multi-Layer Topology .................................................................................................... 16 

3.2.4. Multi-Domain Service Endpoint and Topology ............................................................. 16 

3.3. Service ................................................................................................................................... 16 

3.3.1. Service Lifecycle ............................................................................................................ 17 

3.3.2. End-to-End Service Lifecycle ......................................................................................... 17 

3.4. Transport Network Slicing ..................................................................................................... 17 

3.4.1. Slice Life-Cycle Management ........................................................................................ 17 

3.4.2. Vertical Dedicated Network .......................................................................................... 18 

3.4.3. Slice Isolation ................................................................................................................ 18 

3.5. Monitoring ............................................................................................................................ 19 

3.5.1. Events Collection and Intelligent Grouping .................................................................. 19 

3.6. Traffic Engineering ................................................................................................................ 19 

3.6.1. PCEP for Segment Routing ............................................................................................ 19 

3.7. Automation ........................................................................................................................... 20 

3.7.1. Service Restoration ....................................................................................................... 20 

3.7.2. Service Optimization ..................................................................................................... 20 

3.7.3. Protected Services......................................................................................................... 20 

3.7.4. Zero Touch Provisioning ................................................................................................ 21 

3.7.5. NOS Upgrade ................................................................................................................. 21 

3.8. Policy Enforcement ............................................................................................................... 21 



D2.1 - Preliminary requirements, architecture design, techno-economic studies, 
and data models 

 

© 2021 - 2023 TeraFlow Consortium Parties  Page 5 of 81 

3.9. ML-Based Security................................................................................................................. 21 

3.9.1. Detection At Edge Nodes .............................................................................................. 22 

3.9.2. Detection At The Cybersecurity Component ................................................................ 22 

3.9.3. Adversarial Attacks to Resilient ML .............................................................................. 22 

3.10. Distributed Ledger and Smart Contracts .......................................................................... 23 

3.10.1. Wholesale of Transport Resources ............................................................................... 23 

3.10.2. Resource Allocation Forensic Analysis .......................................................................... 23 

3.11. Compute Integration ......................................................................................................... 24 

3.11.1. NFV Infrastructure Point of Presence (NFVI-PoP) interconnection .............................. 24 

3.12. Inter-Domain ..................................................................................................................... 24 

3.12.1. Inter-domain connectivity services ............................................................................... 24 

3.13. Scenario – Use Case Matrix ............................................................................................... 25 

4. Business Model and Ecosystem Analysis ...................................................................................... 26 

4.1. TeraFlow OS and transport network market growth ............................................................ 27 

4.2. Diffusion of TeraFlow OS ecosystem .................................................................................... 27 

4.3. Roles in TeraFlow OS ecosystem ........................................................................................... 28 

4.4. Interdependencies in TeraFlow OS ecosystem ..................................................................... 29 

4.5. Enabling and blocking mechanisms for TeraFlow OS ecosystem ......................................... 29 

4.5.1. Further work with TeraFlow OS ecosystem .................................................................. 32 

5. Requirements for the TeraFlow SDN Controller ........................................................................... 34 

5.1.1. Inventory ....................................................................................................................... 34 

5.1.2. Topology ........................................................................................................................ 34 

5.1.3. Service ........................................................................................................................... 34 

5.1.4. Monitoring .................................................................................................................... 34 

5.1.5. Traffic Engineering ........................................................................................................ 35 

5.1.6. Automation ................................................................................................................... 36 

5.1.7. Policy ............................................................................................................................. 36 

5.1.8. Cybersecurity ................................................................................................................ 37 

5.1.9. Distributed Ledger and Smart Contracts ...................................................................... 37 

5.1.10. Transport Network Slicing ............................................................................................. 38 

5.1.11. Compute ........................................................................................................................ 38 

5.1.12. Inter-Domain ................................................................................................................. 39 

5.1.13. TeraFlow SDN Controller Security ................................................................................. 39 

5.2. Non-Functional Requirements .............................................................................................. 40 

5.2.1. Performance.................................................................................................................. 40 



D2.1 - Preliminary requirements, architecture design, techno-economic studies, 
and data models 

 

© 2021 - 2023 TeraFlow Consortium Parties  Page 6 of 81 

5.2.2. Usability......................................................................................................................... 41 

5.2.3. Scalability ...................................................................................................................... 41 

5.2.4. Security ......................................................................................................................... 41 

5.2.5. Reliability ....................................................................................................................... 41 

5.2.6. Portability ...................................................................................................................... 42 

6. Proposed Architecture .................................................................................................................. 43 

6.1. Overall Architecture .............................................................................................................. 43 

6.2. Per Component Template ..................................................................................................... 44 

6.3. Detailed Architecture ............................................................................................................ 45 

6.3.1. CoreApps ....................................................................................................................... 45 

6.3.2. netApps ......................................................................................................................... 56 

6.3.3. Cloud Orchestrator Features ........................................................................................ 63 

7. Data Models .................................................................................................................................. 64 

7.1. External Interfaces and Data Models .................................................................................... 64 

7.1.1. NorthBound Interfaces (NBI) ........................................................................................ 64 

7.1.2. SouthBound Interfaces (SBI) ......................................................................................... 65 

7.2. Internal Data Models ............................................................................................................ 65 

8. Use Case Workflows...................................................................................................................... 68 

8.1. L3VPN Service Provisioning ................................................................................................... 68 

8.2. Monitoring ............................................................................................................................ 68 

8.3. Service Restoration ............................................................................................................... 69 

8.4. Traffic Engineering ................................................................................................................ 70 

8.5. Automation ........................................................................................................................... 71 

8.6. Optical and L3 Centralized and Distributed Attack Detection .............................................. 73 

8.7. DLT and Smart Contracts ...................................................................................................... 74 

8.8. Compute integration ............................................................................................................. 75 

8.9. Inter-Domain Services ........................................................................................................... 76 

9. Conclusions and Next Steps .......................................................................................................... 79 

References ............................................................................................................................................ 80 

 

  



D2.1 - Preliminary requirements, architecture design, techno-economic studies, 
and data models 

 

© 2021 - 2023 TeraFlow Consortium Parties  Page 7 of 81 

List of Figures 
Figure 1 Proposed methodology ........................................................................................................... 13 
Figure 2 Components and relationships in an analysis of TeraFlow OS ............................................... 26 
Figure 3 Idealized growth path for an ecosystem, positioning TeraFlow OS in pre-development phase 
(adjusted from [HEK11]) ....................................................................................................................... 27 
Figure 4 Roles in the TeraFlow OS ecosystem, perspective of one operator ....................................... 28 
Figure 5 Overall proposed architecture ................................................................................................ 44 
Figure 6 Context data model ................................................................................................................ 46 
Figure 7 TeraFlow monitoring component initial architecture............................................................. 47 
Figure 8 Monitoring data model ........................................................................................................... 48 
Figure 9 Device internal data model ..................................................................................................... 49 
Figure 10 Traffic Engineering component ............................................................................................. 50 
Figure 11 Automation component internal architecture. .................................................................... 52 
Figure 12 Automation data model. ....................................................................................................... 52 
Figure 13 Policy component internal architecture. .............................................................................. 53 
Figure 14 Policy data model. ................................................................................................................. 54 
Figure 15 Slice data model .................................................................................................................... 55 
Figure 16 DLT component data model.................................................................................................. 56 
Figure 17 Optical attack mitigator data model ..................................................................................... 57 
Figure 18 Attack inference data model................................................................................................. 58 
Figure 19 L3 Centralized Attack Detector Model Output ..................................................................... 59 
Figure 20 L3 Centralized Attack Detector internal data model ............................................................ 59 
Figure 21 L3 Attack Mitigator Output data model ................................................................................ 61 
Figure 23 Different types of inter-domain communication. ................................................................. 62 
Figure 23 Example of protocol buffer ................................................................................................... 66 
Figure 24 L3VPN Service Provisioning sequence diagram .................................................................... 68 
Figure 25 Monitoring sequence diagram .............................................................................................. 69 
Figure 26 Service restoration sequence diagram. ................................................................................ 70 
Figure 27 Traffic Engineering Sequence Diagram ................................................................................. 71 
Figure 28 Zero-Touch Provisioning of a new device into TeraFlow OS. ................................................ 72 
Figure 29 Centralized and distributed attack detection and mitigation ............................................... 73 
Figure 30 DLT sequence diagram .......................................................................................................... 75 
Figure 31 NFV Service deployment using WIM ..................................................................................... 76 
Figure 32 Inter-domain service preparation and activation ................................................................. 77 
Figure 33 Inter-domain service modification ........................................................................................ 77 
Figure 34 Inter-domain service synchronization/monitoring ............................................................... 78 
 

 

  

https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D2.1/D21.docx#_Toc91870672


D2.1 - Preliminary requirements, architecture design, techno-economic studies, 
and data models 

 

© 2021 - 2023 TeraFlow Consortium Parties  Page 8 of 81 

List of Tables 
Table 1 Scenario – Use case matrix ....................................................................................................... 25 
Table 2 Enabling and blocking mechanisms for diffusion of TeraFlow OS ecosystem (factors adapted 
from (Gawer & Cusumano, 2014; Bergek, Jacobsson, Carlsson, Lindmark, & Rickne, 2008; Hekkert, 
Negro, Heimeriks, & Harmsen, 2011)) .................................................................................................. 30 
 

  



D2.1 - Preliminary requirements, architecture design, techno-economic studies, 
and data models 

 

© 2021 - 2023 TeraFlow Consortium Parties  Page 9 of 81 

Abbreviations 
5G-PPP 5G Infrastructure Public Private Partnership 

API Application Programming Interface 

AI 

B5G 

Artificial Intelligence 

Beyond 5G 

BGP Border Gateway Protocol 

CCAM Cooperative, Connected, and Automated Mobility 

CD Continuous Delivery 

CE Customer Edge 

CI Continuous Integration 

DC Data Centre 

DDoS Distributed Denial of Service 

DLT Distributed Ledger Technologies 

DWDM Dense Wavelength Division Multiplexing 

E2E End-to-End 

E-NNI External Network-to-Network Interface 

GMPLS Generalized Multi-Protocol Label Switching 

GUI Graphical User Interface 

IETF Internet Engineering Task Force 

IP Internet Protocol 

KPI Key Performance Indicators 

L2 Layer 2 

L2VPN Layer 2 Virtual Private Network 

L3 Layer 3 

L3NM Layer 3 Network Model 

L3VPN Layer 3 Virtual Private Networks 

LSP Label-Switched Path 

MANO Management and Orchestration 

MEC Multi-access Edge Computing 

ML Machine Learning 



D2.1 - Preliminary requirements, architecture design, techno-economic studies, 
and data models 

 

© 2021 - 2023 TeraFlow Consortium Parties  Page 10 of 81 

MPLS Multi-Protocol Label Switching 

MQP Managed Quality Path 

NBI North-Bound Interface 

NFV Network Functions Virtualization 

NFVI NFV Infrastructure 

NFVI-PoP NFVI Point of Presence 

NOS Network Operating System 

NSP Network Services Platform 

OAP Online Application service Provider 

ONF Open Networking Foundation 

OPM Optical Performance Monitoring 

OS Operating System 

OSM Open Source MANO 

OSS/BSS Operation Support System/Business Support System 

OTT Over The Top 

PE Provider Edge 

POI Point of Interconnection 

PCE Path Computation Element 

PCEP Path Computation Element Protocol 

PoP Point of Presence 

RSVP Resource Reservation Protocol 

SBI South-Bound Interface 

SCS Specialized Connectivity Services 

SDN Software-Defined Networking 

SDO Standards Defining Organization 

SLA Service Level Agreement 

SLO Service Level Objective 

SME Small and Medium Enterprises 

SR Segment Routing 

TDM Time Division Multiplexing 



D2.1 - Preliminary requirements, architecture design, techno-economic studies, 
and data models 

 

© 2021 - 2023 TeraFlow Consortium Parties  Page 11 of 81 

TE Traffic Engineering 

TED Traffic Engineering Database 

TRL Technology-Readiness Level 

TSN Time Sensitive Networking 

UNI User-to-Network Interface 

VLAN Virtual Local Area Network 

VM Virtual Machine 

VRF Virtual Routing and Forwarding 

VSI Virtual Server Instance 

WAN Wide Area Network 

WDM Wavelength Division Multiplexing 

WIM WAN Infrastructure Manager 

ZTP Zero-Touch Provisioning 

  



D2.1 - Preliminary requirements, architecture design, techno-economic studies, 
and data models 

 

© 2021 - 2023 TeraFlow Consortium Parties  Page 12 of 81 

1. Introduction 
The TeraFlow SDN controller is a new type of secure cloud-native SDN controller that will radically 
advance the state-of-the-art in B5G networks. This new SDN controller will be able to integrate with 
the current NFV and MEC frameworks, provide revolutionary features for flow management (service 
layer), and provide optical/microwave network equipment integration (infrastructure layer). These 
capabilities will also incorporate enhanced security using ML (Machine Learning) and forensic 
evidence for multi-tenancy based on DLT (Distributed Ledger Technology). 

The focus of the TeraFlow project is to develop a Carrier Grade SDN controller for B5G networks. 
“Carrier Grade” refers to well-tested networks or infrastructures with extremely high levels of 
reliability, redundancy, and security. This objective will be demonstrated in relevant environments 
with solutions at TRL 5. 

Use cases for IP, optical, and microwave networks will be studied and demonstrated in commercial 
and open-source solutions based on standard interfaces. The covered network domains for the 
proposed solution are transport scenarios integrated with (edge) computing and storage resources. 
TeraFlow will demonstrate its dynamic adaptation based on flows and applications requirements. 
TeraFlow covers a wide variety of network types, ranging from distributed edge-computing, through 
a transport backhaul (including optical and microwave solutions), to the network core. In addition, 
TeraFlow provides carrier-grade connectivity services for B5G networks.  

This deliverable, based on MS2.1, is a crucial document for the TeraFlow architecture definition. 
Additionally, it includes the detailed design specifications for the TeraFlow SDN controller.   



D2.1 - Preliminary requirements, architecture design, techno-economic studies, 
and data models 

 

© 2021 - 2023 TeraFlow Consortium Parties  Page 13 of 81 

2. Methodology 
Figure 1 shows the proposed use of case-based methodology. It is an iterative approach to deliver a 
release of TeraFlow. First, the value of the proposed use cases is analysed from an operations 
perspective. This results in requirements that will be included in open technical specifications 
introduced to SDOs or as contributions to Open-Source Software. Then, an implementation is 
provided, which can be adopted by network operators for immediate use. 

 

Figure 1 Proposed methodology 

The main drivers and strengths for such a methodology are:  

a) It accelerates implementation and industrial production of standard interfaces for network 
applications and devices;  

b) It opens the market at both the network application and device layers. Currently, the lack of 
standard interfaces and the complexity of the software developments in multivendor 
networks is creating a considerable barrier of entrance for new companies and SMEs;  

c) It simplifies the network and service modelling process, making it affordable for a network 
operator; and  

d) It focuses the development on the key functionalities for network operators.  

TeraFlow will use this agile methodology to produce three major software releases: v1 will be released 
at M12, v2 will be released at M24, and v2.1 will be released at M30. These releases will cover the 
length of the technical work packages (WP3 and WP4). The primary software releases will deliver the 
main functionality, while the minor release will provide bug fixes and possibly additional features 
required by the operating experiments. To support software development and the ability to make 
releases with minimal impact on the running services, TeraFlow will adopt a CI/ CD strategy.  
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3. Use Cases 
This section presents the use cases proposed for the TeraFlow SDN controller. They are classified into 
the following topics: inventory, topology, service, transport network slicing, monitoring, traffic 
engineering, automation, policy enforcement, ML-based security, distributed ledger and smart 
contracts, compute integration, and inter-domain. 

These use cases refer to multiple network technologies covering IP, Optical, and Microwave. Optical 
and Microwave are deployed as transport networks, while IP is intended to provision L3VPN services.  

3.1. Inventory 

This set of uses cases provides means to recover information and state about hardware components 
of network elements and the logical configuration of the devices intended to be performed by any NBI 
client controller, module, or application that aims to discover the component hierarchy of the 
equipment. Use cases for optical and IP domains concerning Inventory are further described in 
[TR547], [LIU21]. 

3.1.1. Hardware Inventory Collection 

Technologies 
involved 

IP, Optical, Microwave 

Type Inventory 

Description This use case consists of retrieving all hardware (physical) information about the equipment 
available from the TeraFlow SDN Controller. These components might be line cards, 
transceivers, ports, etc. 

3.1.2. Logical Inventory Collection 

Technologies 
involved 

IP, Optical, Microwave 

Type Inventory 

Description This use case consists of retrieving all logical configuration information about the equipment 
available from the TeraFlow SDN Controller. Logical inventory refers to layer 3 and layer 2. 

There are three modes for this use case: 

• Retrieve logical interfaces inventory - focus on retrieving all the logical or virtual 
interfaces of specific equipment, such as sub-interfaces, VLAN interfaces, tunnel 
interfaces, and other non-physical interfaces. 

• Retrieve logical resources inventory - focus on retrieving all the logical or virtual 
resources of specific equipment such as system policies for routing, access, logging, 
security, etc. 

• Retrieve logical protocols inventory - focus on retrieving the information 
regarding all the logical protocols such as Border Gateway Protocol (BGP), 
Multiprotocol Label Switching (MPLS), Resource Reservation Protocol (RSVP). 

 

  



D2.1 - Preliminary requirements, architecture design, techno-economic studies, 
and data models 

 

© 2021 - 2023 TeraFlow Consortium Parties  Page 15 of 81 

3.1.3. Host tracking 

Technologies 
involved 

IP 

Type Inventory 

Description This use case retrieves all detected hosts (both at IP and MAC layers) and the latest detection 
time. This will allow identification of possible required flows and implementation of other 
use cases such as E2E service provisioning. 

3.2. Topology  

A set of abstractions has been defined to represent several views of the network topology. Use cases 
for optical and IP domains concerning Context and Topology discovery are further described in 
[TR547], [LIU21]. There are two modes of operations: 

• Polling mode - based on periodic polling retrieval operations and after each service creation 
to reconcile the actual state of the network. 

• Event-triggered mode - based on an initial proactive synchronization done from the NBI client 
module and a connection-oriented notification subscription session based on the NBI 
Notification mechanism. 

In the Internet layering reference model, the communications between a computing system are split 
into seven different abstraction layers: Physical, Data Link, Network, Transport, Session, Presentation, 
and Application. In the following sections, we use layer 0 to refer to transport using optical and 
microwave networks and layer 3 for IP packets. Multi-layer topologies include multiple layer transport 
mechanisms, typically IP over optical/microwave networks.  

From the SDN controller perspective, a network domain includes the network elements that the SDN 
controller manages and may be specific areas of technology, vendors or administrative regions. The 
multi-domain topology includes the combined view of multiple SDN controlled domains. 

3.2.1. Context & Service Endpoints Discovery  

Technologies 
involved 

Optical, IP, Microwave 

Type Topology 

Description This use case retrieves all Service Endpoint [TR547] information available from the 
TeraFlow SDN Controller. It is intended to be performed by any NBI client controller, 
module, or application to discover the logical representation of the network done by the 
TeraFlow SDN Controller.  

 

3.2.2. Single Layer Topology 

Technologies 
involved 

Optical, IP, Microwave 

Type Topology 
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Description This use case retrieves all topological information available from the TeraFlow SDN 
Controller. It is intended to be performed by any NBI client controller, module, or application 
that aims to discover the logical representation of the network.  

There are two modes of operations foreseen for this use case: 

• Polling mode - based on periodic retrieval operations and after each service creation 
to reconcile the actual state of the network. 

• Event-triggered mode - based on an initial proactive synchronization done from 
the NBI client module, and a connection-oriented notification subscription session 
based on the NBI Notification mechanism. 

 

 

3.2.3. Multi-Layer Topology 

Technologies 
involved 

IP, Optical, and Microwave 

Type Topology 

Description This use case consists of retrieving all topological information available from the TeraFlow 
SDN Controller to carry out multi-layer mapping.  

 

3.2.4. Multi-Domain Service Endpoint and Topology 

Technologies 
involved 

Optical, IP, Microwave 

Type Topology 

Description This use case intends to define how the TeraFlow SDN Controller exposes the unified multi-
domain topology, including its service mapping list and topological information. 

The discovery of this information is intended to be requested proactively from a TeraFlow 
SDN Controller to synchronize the information, which must be updated when the OSS 
requests it. 

UNIs and E-NNIs must be exposed as new service ports in the topological information.  

3.3. Service 

Two different kinds of service are considered: 

• Layer 2/3 services: L2/L3VPN services 
• Layer 0: Optical or Microwave services 

In the L3VPN for 5G Services, the nodeB are directly connected to the cell site (HL5 layer). The cell site 
acts as a first aggregation layer, for nodes that share the same geographical location. The connections 
between the next Access Router layer (HL3) and cell site layer are made in a ring topology. The HL3 
receives and aggregates traffic from the rings of the same state (geographical location). In the HL5 an 
L3VPN is created to receive the interfaces of each nodeB [MUS21]. L3VPNs are used to deploy 5G but 
fixed and enterprise services mainly because several traffic discrimination policies can be applied in 
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the network to transport and guarantee the right SLAs to the mobile customers. They have been 
typically statically configured, and with the adoption of modern protocols, they can be dynamically 
configured on IP routers. IP routers are interconnected using underlying network elements, such as 
DWDM or Microwave transport networks. To provide E2E connectivity services, underlying network 
connections shall be controlled and managed. 

3.3.1. Service Lifecycle 

Technologies 
involved 

IP, Optical, Microwave 

Type Service Lifecycle 

Description This use case is used to handle service lifecycle in a single domain. Two different kinds of 
service are considered: 

- L2/L3VPN services 

- Optical or Microwave services 

All service types shall be able to support multiple configuration parameters, as well as to 
include multiple constraints (e.g., traffic engineering).  

3.3.2. End-to-End Service Lifecycle 

Technologies 
involved 

IP 

Type Service Lifecycle 

Description This use case consists of creating, modifying, and removing L2/L3VPNs without the need 
for manual configuration. It also allows the creation of E2E underlying connections without 
changes in the configuration during service provisioning. 

3.4. Transport Network Slicing 

For end-business customers (like OTT companies or enterprises), leased lines have the advantage of 
providing high-speed connections with low costs. On the other hand, traffic control for leased lines is 
very challenging in rapid changes in service demands. Carriers are recommended to provide network-
level slicing capabilities to meet this demand. Based on such capabilities, private network users have 
complete control over the sliced resources allocated to them and could be used to support their leased 
lines, when needed. A transport network slice will consist of a set of endpoints (e.g., CEs), a 
connectivity matrix between subsets of these endpoints service level behaviours requested for each 
sender on the connectivity matrix [FAR21]. The connectivity between the endpoints might be point-
to-point, point-to-multipoint, or multipoint-to-multipoint. Often these slices will be used to satisfy 
network behaviour defined in a Service Level Agreement (SLA) [FAR21]. 

3.4.1. Slice Life-Cycle Management 

Technologies 
involved 

Optical, IP, Microwave 

Type Transport Network Slicing 



D2.1 - Preliminary requirements, architecture design, techno-economic studies, 
and data models 

 

© 2021 - 2023 TeraFlow Consortium Parties  Page 18 of 81 

Description This use case includes the transport network slice life-cycle management. Users may 
formulate transport network slices based on the demand for services and the time needed to 
schedule the resources from the entire network flexibly. Several services might be offered for 
a transport network slice, including L3/L2 VPN or VLAN constraints. 

3.4.2. Vertical Dedicated Network 

Technologies 
involved 

Optical, IP, Microwave 

Type Transport Network Slicing 

Description Vertical industry slicing is an emerging category of network slicing due to the high demand 
for private high-speed network interconnects for industrial applications. 

The biggest challenge is implementing differentiated transport network slices based on the 
requirements from different industries. For example, in the financial industry, to support high-
frequency transactions, the slice must provide the minimum latency and latency management 
mechanism. For the healthcare industry, reliability mechanisms are needed to ensure the 
delivery of HD video without frame loss. In addition, the network needs to support on-
demand, large-bandwidth allocations for bulk data migration in data centres. In each vertical 
industry scenario, the bandwidth needs to be adjusted as required to ensure flexible and 
efficient network resource usage. 

This use case shall consider two different types of slices: Ultra-Reliable Low Latency 
Communications (URLLC) and Enhanced Mobile Broadband (eMBB). 

3.4.3. Slice Isolation 

Technologies 
involved 

Optical, IP, Microwave 

Type Transport Network Slicing 

Description Customers require the network slice to be delivered isolated from any other network slices 
delivered to any other consumers. In other words, any changes (to network loads or events 
like congestions or outages) to the other network slices do not negatively impact the delivery 
of this network slice. Consumers often specify isolation as an SLO and may be associated 
with other SLOs, e.g., latency under traffic congestion. 

Isolation can be achieved by resource partitioning and/or robustness techniques, e.g., 
dedicated resources, shared resources with safeguards, or reserved backup paths. Examples 
include traffic separation via VPNs (L2/L3VPN, EVPN), interference avoidance via network 
capacity planning, traffic policing or shaping, prioritization in resource utilization, etc. In 
terms of security, each slice may have additional security SLOs, which should be executed 
in an isolated way. On the other hand, isolation is a means to strengthen security because it 
protects one slice from attacks that vary the traffic on other services or slices on the same 
underlay network. 

Complete resource isolation can be achieved by provisioning dedicated fibres, which is 
feasible, but very expensive. Therefore, physical splitting (e.g., in time or frequency) can be 
used. For instance, in optical networks, full lambdas can be isolated using Wavelength 
Division Multiplexing (WDM) or Time Division Multiplexing (TDM) techniques by 
assigning specific time slots to specific slices. The previous techniques are known as hard 
isolation. At the opposite end of the spectrum, soft isolation solutions rely on the simple 
separation of traffic delivery, such as simple MPLS or VLAN tagging. These mechanisms 
offer separation, but not isolation performance guarantees. The design of intermediate 
solutions between hard and soft isolation may be classified into two classes: i.) Link layer 
(Layer 1.5 / Layer 2) technologies such as Flex Ethernet (FlexE), dedicated queuing, or TSN; 
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ii.) Network layer technologies such as MPLS-TE, Deterministic Networking (DetNet), 
Segment Routing (SR). 

This use case requires the provisioning of different isolation levels for Transport Network 
Slices, being hard or soft isolation the minimum set required. 

 

3.5. Monitoring 

This use case describes the necessary information (including alarms and events) collected directly from 
network elements through multiple protocols, such as NETCONF/YANG or by streaming telemetry 
(gRPC) feeding the event manager. The received data shall be stored, analysed, and retrieved to 
perform additional closed-loop automation and big data analysis.  

3.5.1. Events Collection and Intelligent Grouping 

Technologies 
involved 

IP 

Type Fault Management 

Description This use case consists of sending alarms and relevant information related to the alarms. It 
shall also be possible to define operator-defined threshold-crossing alerts (TCAs).  

 

3.6. Traffic Engineering 

Traffic engineering (TE) allows the enforcement of traffic steering flows by leveraging MPLS tunnels or 
Segment Routing paths. This allows increasing the efficiency of using the network resources by 
correctly mapping the traffic flows to the available resources and improving network management, 
identifying issues and reacting to overcome difficult failure situations. Furthermore, the Path 
Computation Element (PCE) function has been defined to allow the performance of complex 
constrained based path computation over a network graph representation. This improves the 
application of TE policies in G/MPLS networks. Based on these functionalities, traffic engineering's 
primary purpose is to reduce overall operating costs through more efficient network resource usage, 
including link occupation, traffic rerouting, and network availability [MUS21]. 

3.6.1. PCEP for Segment Routing 

Technologies 
involved 

IP 

Type PCEP for Segment Routing (LSP Creation, modify and delete with SR) 
Description This use case consists of creating, modifying, and deleting segment routing LSPs on 

the available hardware, considering specific constraints and the available resources. 
For example, the constraints given to the PCE for the calculation of the LSP could 
be required latency, bandwidth consumption and hop count, and if the result should 
be a strict explicit path or a loose one. 
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3.7. Automation 

Automation greatly facilitates several key networking operations. First, automated network 
management procedures include dynamic network resource discovery (i.e., topology discovery) and 
network configuration via modern open standards (e.g., gRPC, P4, NETCONF/YANG). Secondly, 
automated service provisioning enables programmatic creation and management of network services 
at a high-level. At the same time, a low-level configuration is populated to the underlying network 
elements through their association with network flows and automatically-verified policies.  

Moreover, automation transforms manual network operations through a software-defined NOS, 
which manages the device lifecycle via programmable control loops. Some related NOS tasks include 
(i) automated NOS deployment and basic configuration as a response to newly added devices in the 
network; (ii) remote NOS upgrade when a new version is available; (iii) rollback recovery upon, e.g., 
version instability issues; and (iv) NOS migration and white box configuration across different vendors. 
Popular NOSes include, but are not limited to, Stratum, Cumulus, Open Network Linux (ONL), DENT, 
SONiC, OcNOS, Beluganos. 

Finally, automation enhances system stability by recovering flow state in case of, e.g., a race condition 
and by detecting anomalous behaviours or attacks, while taking appropriate remedial actions. 

3.7.1. Service Restoration 

Technologies 
involved 

IP 

Type Automation 

Description In case of connectivity service failure, service paths automatically reroute themselves 
whenever a change occurs in the routing table or in the status of a node or link.  

3.7.2. Service Optimization 

Technologies 
involved 

IP 

Type Automation 

Description This use case facilitates the dynamic network operation and optimizes the network 
occupancy. This use case motivates the automatic administration, and thus modification, of 
Connectivity Services using a centralized network controller.  

3.7.3. Protected Services 

Technologies 
involved 

IP 

Type Automation 

Description This use case consists of creating preconfigured protected connectivity services over 
dedicated resources that are deployed at the very same time. 
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3.7.4. Zero Touch Provisioning 

Technologies 
involved 

Optical, IP 

Type NOS life-cycle management 

Description ZTP is the process of deploying an NOS and a base configuration in a network element (a 
router or a transponder) so that the network element can enter in production without any 
human configuration. The ZTP process is done for the first time when the device is turned on 
in the network. Periodically, system vendors release new versions of their NOS. A very 
similar ZTP process can be done for this upgrade scenario. Nowadays, the NOS upgrade 
process is a vendor-dependent process, and the procedure differs between vendor solution. 
The ZTP and upgrade process presented in this part is a first step towards having a common 
procedure for open white box scenarios. 

3.7.5. NOS Upgrade 

Technologies 
involved 

Optical, IP 

Type NOS Upgrade 

Description NOS developers continually add new functionalities and reduce the possible bugs detected in 
the software that the network elements run. These software artifacts can have several releases 
during a year; this demands the network operators are continually moving the devices-
software to the latest stable version. The process to automatically move from one software 
release to another is what we define as the NOS Upgrade process.   

 

3.8. Policy Enforcement 

Network operators may express policy rules to be automatically enforced in the network by the 
TeraFlow OS. 

Technologies 
involved 

Optical, IP 

Type Policy 

Description A network operator may define a policy rule and associate it with an existing network service. 
The TeraFlow OS policy component will ensure that the correct network configuration will 
be automatically applied to the correct devices. This will be achieved through the interaction 
among the policy, context, and device components of the TeraFlow OS. 

 

3.9. ML-Based Security 

Security is vital in the TeraFlow OS as network operations will be done by software components 
virtually operating without human intervention. These three use cases exemplify the detection of 
different types of attacks that can appear in the control and data plane.  
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3.9.1. Detection At Edge Nodes 

Technologies 
involved 

IP 

Type ML-based security 
Problem Detection and identification of malware network flows crossing the data plane cannot be done 

in an ML-based central component due to scalability problems and slow response times. It 
would be desirable to implement a distributed solution in which ML components are deployed 
at edge nodes. 

Description This use case addresses the monitoring and detection of malicious network flows crossing the 
data plane by placing ML components at the edge of network to achieve scalability and 
increase the speed response during the detection process. To this end, a feature extractor is 
deployed at the edge of the network to collect and summarise packets. The flow statistics 
aggregated by the feature extractor are sent to an ML classifier. Based on the real-time 
identification of malicious flows, the ML model will report insights to the TeraFlow SDN 
controller to perform security assessments. 

A crucial task is to determine whether the feature extraction and aggregation processes can 
be done much more efficiently at the kernel level using high performance techniques (for 
example, extended-bpf technology) than doing it at the application level using standard OS 
interfaces. 

 

3.9.2. Detection At The Cybersecurity Component 

Technologies 
involved 

Optical, IP 

Type ML-based security 

Problem Attack detection and identification based on monitoring data. 

In ML, attack detection can be realized by the anomaly detection task. Attack identification, 
in ML, can be realized by the classification task. 

Description This use case consists of continuously assessing the data plane security status of the network 
across optical and IP layers. First, layer-specific attack detection and identification models 
perform the monitoring data from optical and IP layers independently. Then, a security 
assessment is performed considering both layers' monitoring data and security status. Finally, 
if relevant, the security assessment performed by the edge nodes can also be considered. 

There are two tasks for this use case: 

• Attack detection – consists of determining whether an attack is being launched in 
the network or not. 

• Attack identification – consists of identifying, among the previously categorized 
attack types, which type is the currently detected attack; there is also the possibility 
that the attack cannot be categorized among the existing attack types, in which case 
the attack can be identified as unknown and later categorized by a specialist. 

 

3.9.3. Adversarial Attacks to Resilient ML 

Technologies 
involved 

 IP  
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Type Security of the control plane. 

Problem ML components are usually deployed on top of SDN controllers to help them to identify 
complex patterns. However, new attacks can introduce small perturbations in the input that 
humans cannot easily detect and fool ML inferences. 

Description This use case addresses the design of ML algorithms that are deployed on top of the SDN 
controller and react with resiliency to sophisticated adversarial AI attacks. In particular, the 
set of ML components included in TeraFlow’s netApp ecosystem will be able to protect 
themselves against the recently appeared adversarial attacks that try to fool ML algorithms. 
Resilience to adversarial attacks is added to ML algorithms by using existing open-source 
tools (e.g. Cleverhans and Foolbox). Only the models obtaining high accuracy against the 
corresponding attacks included in the open-source libraries will be selected to be part of the 
TeraFlow’s netApp ecosystem. 
Although adversarial attacks are still in their infancy, this use case will consider several well-
known sources of attacks such as adversarial perturbations, out of distribution black box 
attacks and white box attacks. 

 

3.10. Distributed Ledger and Smart Contracts 

These use cases address the design and development of permissioned blockchains. The reason for 
permissioned blockchains is twofold: higher throughput, scalability, and improved privacy. The focus 
will be on the security requirements and requirements for the distributed ledger component. 

3.10.1. Wholesale of Transport Resources 

Technologies 
involved 

IP 

Type Distributed Ledger and Smart Contracts   

Description In the transport resource wholesale market, more minor local carriers and wireless carriers 
may rent resources from larger carriers (“carriers carrier”), or infrastructure carriers instead 
of building their networks. Likewise, international carriers may rent resources from 
respective local carriers and local carriers may lease their owned networks to each other to 
achieve better network utilization efficiency. 

From the perspective of a resource provider, it is crucial that a network service is timely 
configured to meet traffic matrix requirements requested by its tenants. Typically, a resource 
purchaser expects to use the leased network resources flexibly, just like they are self-
constructed. Therefore, the purchaser is not only provided with a network service, but also 
the full set of functionalities for operating and maintaining it. In a flexible and independent 
manner, the purchaser also expects to schedule and maintain physical resources to support 
their own end-to-end automation using both leased and self-constructed network resources. 

This use case shall consider a marketplace for wholesale transport resources using Distributed 
Ledger Technologies (DLT) and smart contracts. 

3.10.2. Resource Allocation Forensic Analysis 

Technologies 
involved 

IP, Optical, Microwave 

Type Distributed Ledger and Smart Contracts 
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Description This use case focuses specifically on the data exchanged, and data stored by the distributed 
ledger component will be considered. Among others, the distributed ledger will record 
runtime information such as software status (e.g., software/firmware version) and runtime 
information (e.g., remote attestation, tamper detection). This use case will enhance device 
and component security, enable tamper detection, and ensure the independent verification of 
device status, history, and details. 

3.11. Compute Integration 

3.11.1. NFV Infrastructure Point of Presence (NFVI-PoP) interconnection 

Technologies 
involved 

IP 

Type Compute integration 

Description The WAN Infrastructure Manager (WIM) controller can be defined as a dedicated entity to 
handle the establishment, deletion and updating of the connectivity services between the 
network endpoints located at different NFVI-PoPs (i.e., data centers). In other words, the 
WIM controller takes over the lifecycle management of the end-to-end connections to be 
allocated over an underlying transport infrastructure (WAN) offering multi-site service 
connectivity. That said, the targeted Teraflow OS (acting as an SDN Controller 
implementation) becomes the WIM controller interacting with an NFV orchestrator for the 
sake of deploying network services requiring both cloud and networking resources. 

For the specific and selected implementation of a NFV orchestrator based on the ETSI OSM 
MANO release, the interworking between the OSM and the Teraflow OS (i.e., WIM 
controller) relies on an available YANG data model specified in the IETF L2/L3 VPN 
document [RFC8466]. To this end, the OSM offers a plugin that handles the lifecycle 
management of L2/L3 VPN connectivity services (i.e., creation, removal, and updating) over 
a defined REST API. Using this API, the OSM acts as the client, whilst the Compute 
component of the Teraflow OS operates as the server to receive, proceed, and trigger the 
L2/L3 VPN connectivity services demanded by the OSM orchestrator. This entails the 
interactions of the Compute component with other components (e.g., service) involved in the 
Teraflow OS solution. 

3.12. Inter-Domain 

An inter-domain transport network slice comprises several transport slices controlled by multiple 
SDN controllers. 

3.12.1. Inter-domain connectivity services 

Technologies 
involved 

IP 

Type Inter-domain 

Description This use case focuses on providing dedicated QoS-aware inter-domain connectivity services 
and enabling interaction between TeraFlow OS instance and peer TeraFlow OS instances that 
manage different network domains to create E2E transport network slicing service. 

Before exchanging any requests, two peering TeraFlow OS instances need to authenticate 
each other. In the context of workflows related to the preparation and activation of inter-
domain services, interactions with the service catalogue (available service templates) and the 
service inventory (existing service instances) are necessary. Moreover, in case a service 



D2.1 - Preliminary requirements, architecture design, techno-economic studies, 
and data models 

 

© 2021 - 2023 TeraFlow Consortium Parties  Page 25 of 81 

request spans multiple domains, the slice component involves the IDC by sending it an inter-
domain subslice request. In addition to sending an inter-domain subslice request to the local 
slice component, the TeraFlow OS instance also forwards the inter-domain subslice request 
to the other domains that are involved in the E2E service. 

 

3.13. Scenario – Use Case Matrix 

In Table 1 below, the relationship between the proposed use cases and the D5.1 scenarios. This matrix 
will ease specific demonstrations in the scope of WP5. 

Please refer to D5.1 for a clear description of the proposed scenarios: 

- Scenario 1: Autonomous Network Beyond 5G 
- Scenario 2: Automotive 
- Scenario 3: Cybersecurity 

 

 Scenario 
1 

Scenario 
2 

Scenario 
3 

Inventory  X X  
Topology X X X 
Service  X X X 
Transport network slicing X X  
Monitoring   X 
Traffic Engineering X   
Automation X   
Policy X   
ML-based security   X 
Distributed ledger and smart 
contracts 

 X  

Compute X   

Inter-domain  X  

Table 1 Scenario – Use case matrix 
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4. Business Model and Ecosystem Analysis 
Within TeraFlow, we work with business models from two approaches. First, designing business 
models is part of our project’s regular exploitation activity within T6.1 and T6.3. Secondly, TeraFlow 
has a specific research task – T2.3 – which analyses and suggests how future ecosystems and business 
models will evolve and what they will look like - these activities enrich each other. This deliverable 
reports on the ecosystem analysis and makes references to D6.2. 

In our analysis of the TeraFlow OS ecosystem, we rely on frameworks sourced from platform 
ecosystems and technological innovation systems [BER08] [Hek11]. Together, the frameworks offer 
well-known structures and driving factors in a growing ecosystem. The data input to our analysis 
includes the TeraFlow proposal, TeraFlow partners’ exploitation plans, and literature. We especially 
appreciate the input from open-ended interviews with partners on topics described below.  

As indicated in Figure 2, our analysis is structured with specific analytic components and their 
relationships. Ecosystems are complex market configurations; thus, we must simplify to provide a 
clear message. We first comment on the vision of a future market, and how the TeraFlow OS 
ecosystem is meant to unleash this market. We distinguish between the growth of the TeraFlow OS 
ecosystem and the growth of the transport network market that the TeraFlow OS enables. Then, we 
propose a diffusion pattern for the TeraFlow OS ecosystem and suggest roles filling it. Having the roles 
in mind, we structure insight on mechanisms that can both block and enable the growth of an 
ecosystem sorted according to well-known driving factors. Before the analysis, we summarise the 
main characteristics of an ecosystem.  

 

Figure 2 Components and relationships in an analysis of TeraFlow OS 

An ecosystem [HAL21] is a business concept meant to capture market configurations where there are 
high interdependencies between roles, however, where one firm cannot directly control the others. 
That is, it is different from a pure market (no interdependencies and no control) and a value chain 
(interdependencies and possible to control). A mature ecosystem with settled roles and many firms 
has grown big from a small market with fewer and unsettled roles and firms, and high uncertainty. By 
nature, technologies and thus systemic markets with high interdependencies are characterized by 
strong reinforcement effects that explain the high uncertainty about a growth and growth path. Open 
interfaces and technologies make it easy to innovate, be interoperable, and grow in an ecosystem. 
While this is necessary to kick off an ecosystem, it is also necessary to make it attractive for firms to 
join an ecosystem by decreasing their perceived risk and increasing belief in profit opportunities in a 
future market.  
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4.1. TeraFlow OS and transport network market growth 

TeraFlow is about developing an SDN controller for the transport network which is using OPEN and 
standard APIs enabling transport network abstraction and vendor agnostic programmability, thus full 
interoperability across network devices from different vendors and network applications (NetApps). 
Eventually, operators’ ambitions with applying Teraflow OS are increased cost efficiency, flexibility 
and innovation, and decreased delivery times. Thus, an expected market pull and operator ability to 
serve a growing market is a backdrop for the TeraFlow OS initiative (please, also confer with Section 
2 and D6.2). Implicitly, better interoperability across hardware, software, and operators is the only 
way to unleash this market growth - i.e., the ultimate argument for TeraFlow OS.  

However, the argumentation for the future market contains the ambition of operators decreased 
costs, and thus, delivers two conflicting messages to stakeholders:  

1. Total market decrease: Cost efficiencies for operator  market decrease for providers 
2. Total market growth: Operators’ innovation, addressing more needs  market growth for all  

Eventually, beliefs or dis-beliefs in market growth and roles can mobilize and detract stakeholders. 
We emphasize this tension here, because our analysis shows that blocking and enabling mechanisms 
for the TeraFlow OS ecosystem seem to be highly affected by stakeholders’ concerns about the 
constitution of a future market.  

4.2. Diffusion of TeraFlow OS ecosystem 

Figure 3 illustrates the diffusion of one ecosystem, with five phases [HEK11]. The vision of TeraFlow 
OS is to accelerate into huge diffusion; in its current form the TeraFlow OS ecosystem is an idea in a 
pre-development phase. Thus, the point of view in our analysis is an early phase of the TeraFlow OS 
ecosystem diffusion. From this angle, we identify and discuss the factors and mechanisms that are 
dominant in this phase, and what may bring the TeraFlow OS ecosystem into take-off and acceleration. 

 

Figure 3 Idealized growth path for an ecosystem, positioning TeraFlow OS in pre-development phase (adjusted from [HEK11]) 
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4.3. Roles in TeraFlow OS ecosystem 

The following is an overview of the roles identified in the TeraFlow OS ecosystem, integrating roles of 
today and the future as depicted in Figure 4. We expect that the roles mostly will be the same, but the 
content of the role may change. As far as possible, we comment on this change.  

The (network) operators implement TeraFlow OS in their operations of transport networks. Telefonica 
and Telenor are examples of operators. Figure 4 is a basic illustration of how TeraFlow OS affects one 
operator and its direct customers and providers. Currently, transport network operators are 
predominantly cost centres in telecommunication providers, who in turn sell fixed and wireless 
accesses and subscriptions to consumers and enterprises. However, in future, the operators of 
transport networks may be a profit and loss centre, selling services to many types of customers. 

The operator's products in the future are Transport network slice (here denoted NaaS for the network 
as a service), or Layer2 Virtual Private Networks (L2VPN). These products are offered to different 
customers at a price dependent on, e.g., traffic volume or quality.  

 

Figure 4 Roles in the TeraFlow OS ecosystem, perspective of one operator 

The operator's customers may be an entity that is part of the same telecommunication provider and 
combines transport, core, and access networks – i.e., the communication service provider (CSP) role 
– or a digital service provider (DSP), which combine network components from different providers. 
Furthermore, other operators of transport networks are important customers. It is an additional 
challenge for some operators to operate the transport network across many countries and local 
operators. Such customers and other operators will have yet other customers who demand services 
and drive market growth. 

The first set of providers to the transport network operator are solution providers who sell hardware, 
with embedded proprietary software and proprietary interfaces (network management systems). 
Infinera and SIAE are examples and partners in TeraFlow. Currently, this is the main way of selling 
hardware and software to operators, mostly with a price per hardware unit. The different provider-
specific hardware interfaces constitute the big challenge that TeraFlow OS addresses and intends to 
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replace vendor agnostic programmability. For traditional hardware providers, their role is shifting 
towards being providers of software, with new market terms and business models. 

In the TeraFlow project there are also solution providers who sell only software in combination with 
hardware; however, their current role is marginal compared to hardware providers. It is expected that 
TeraFlow OS opens for smaller software providers and drives previous hardware providers into the 
role of software providers. Thus, software providers may deliver to, or be complements to the 
hardware providers indicated in Figure 4. Ubitech is a TeraFlow partner which deal with software and 
adjust it to hardware or help other software providers to deploy their applications on hardware or in 
networks. 

The second set of providers are those developing and selling NetApps which can be used in the 
operation of the transport network. Currently, providers will have to align their NetApps to the 
proprietary interfaces offered by hardware providers. It is expected that the number of NetApp 
providers could increase if the TeraFlow OS ecosystem takes off. NEC is a partner in TeraFlow and an 
example of a potential provider of a security NetApp. 

We suggest that Standard Developing Organizations (SDOs) have a distinct role in the TeraFlow OS, 
as a governance mechanism ensuring sustainability in the long term. For open-source initiatives such 
as TeraFlow OS, SDOs must be understood to include well-governed and trusted open-source 
communities such as OpenSource Mano.  

The provider of an SDN controller is also a relevant role. Currently, actors in these roles provide 
complete systems which address the same domain as TeraFlow OS (for definitions and competitors, 
see D6.2). However, in future, as open-source software, TeraFlow OS (APIs for standard network and 
service modelling) would be sourced from a shared repository governed by a designated community 
(e.g., such as ETSI’s opens-source project OSM) or implemented and published as fully interoperable 
standards by well-known SDOs. In this context, roles as system and SW integrators or consultancies 
may emerge and extract a significant share of the market for SDN controllers [BER08]. E.g., the partner 
Peer Stritzinger sees itself as a provider of solution integration in the TeraFlow context.  

In Figure 4, TeraFlow OS is the network management system used on the interface between the 
operator and solution providers, and which NetApp providers also use (see also D6.2).  

4.4. Interdependencies in TeraFlow OS ecosystem 

Figure 4 depicts only one operator using TeraFlow OS. Ideally, more operators must use TeraFlow OS 
to put sufficient pressure on hardware providers to adhere to open interfaces.  Furthermore, the 
market for independent NetApps becomes sufficiently attractive only when providers can replicate 
implementations across operators. Finally, the need for transport network interoperability between 
operators calls for a wider implementation. Thus, there is interdependency between roles and their 
motives in the TeraFlow OS ecosystem. It becomes important to reach a critical mass in the 
development, demand for and use of Teraflow OS to take off and mobilize and motivate yet other 
operators, providers, and SDOs.  

4.5. Enabling and blocking mechanisms for TeraFlow OS ecosystem 

Many enabling and blocking mechanisms will affect take-off and eventual acceleration of the TeraFlow 
OS ecosystem. In Table 2, we have sorted our input in this respect according to well-known driving 
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factors for growth for technological systems: legitimation; profit opportunities; market formation 
vision; experimentation; knowledge exchange and development; open technologies; network 
effects/externalities [GAW14], [BER08], [HEK11]. Research has shown that these factors have a lot of 
explanatory power on an aggregated level for how an ecosystem evolves and should be catered to 
from a strategic point of view. The mechanisms that enable or block, for instance, a factor like 
experimentation, can vary and be case-specific for the TeraFlow OS. It should be noted that the 
relationships between mechanisms and factors are not mutually exclusive. 

Furthermore, the input is what partners can imagine as potentially having positive or negative effects 
on TeraFlow OS diffusion, now and in future. At this stage in our analysis, we share the raw input in 
Table 2. Still, we already see that the patterns and focus of interest that emerge are consistent with 
TeraFlow OS being in a pre-development phase.  

It should not come as a surprise that a lot of the input concerns the openness of technologies, and 
how beliefs and attitudes are either positive or negative for the evolution of TeraFlow OS. In line with 
expectations in an early phase [HEK11], the intention and relevance of building knowledge is 
motivating partners, but also seen as an obstacle if it is not shared efficiently in a larger community. 
It is well-known that stakeholders must be able to envision profit opportunities for themselves in early 
phases to be motivated; in our data we see that a lot of resistance towards TeraFlow OS can be found 
in a skepticism to future market growth and a profitable role for providers. Yet others cannot see that 
there is an alternative to accepting the openness TeraFlow OS introduces.  

Table 2 Enabling and blocking mechanisms for diffusion of TeraFlow OS ecosystem (factors adapted from (Gawer & 
Cusumano, 2014; Bergek, Jacobsson, Carlsson, Lindmark, & Rickne, 2008; Hekkert, Negro, Heimeriks, & Harmsen, 2011)) 

Enabling mechanisms  Driving factors for 
TeraFlow OS 

diffusion 

Blocking mechanisms  

• Large providers: the market moves towards 
openness, open interfaces 

• Governance system for standards and open 
source is stable 

• Large operator takes lead in openness 
• Large operators ally for openness, have a 

forum for sharing 
• Providers see it as an advantage to be 

pluggable, implemented easily, interact with 
open interfaces - to be compliant 

• SDO’s acknowledgement 

Legitimation  
(trust in 

sustainability over 
time) 

• HW and SW providers reluctant to adhere to 
open source 

• Operators do not know if TF OS is the 
winner – wait. Followers. 

• Political positions on standards (country, 
actor) 

• Standard/open source will not be sustained 

• Success stories 
• Use-cases are good (need to be solved) 
• Operators start to use and purchase open 

HW and SW, market grows, and some 
providers increase their sales  

• Proprietary providers are lagging – decide to 
join the “open” trend to take part in market 
growth 

• Opens source business models: Proprietary 
on top, Semi open, Exclusive knowledge 

• SW developers’ knowledge is unique – basis 
for profit extraction, e.g., consultancy 

• Large providers – think there eventually will 
be other business models 

• Small provider - With open source we can be 
part of the larger market – spin offs 

Profit opportunities 
(belief in own profit 

in future market) 
 
 

Market formation 
vision 

(belief: market will 
grow from small to 

large) 

• Providers (all) think appropriation level for 
open tech (profit opportunities) too low 

• Providers cannot see willingness to pay for 
coding, system and SW integration, 
consulting, debugging 

• Future markets are perceived as too small 
• Providers’ price and profit decrease – fear 

future profit 
• Providers see only cost cutting – not market 

growth 
• Providers see only additional costs – and no 

benefits for them 
• Do not recognize the need for 

interoperability 
• Operators not interoperable and thus, too 

few customers to scale for small providers 
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Enabling mechanisms  Driving factors for 
TeraFlow OS 

diffusion 

Blocking mechanisms  

• Small provider – the market moves towards 
open, customers want this  

• Small provider – costs less when not 
developing/maintaining proprietary 
interfaces – network mngm. systems 

• Interfaces are open – still possible to profit 
from proprietary embedded SW  

• Interoperability is necessary to manage to 
grow the market (total, and for own firm) 

• Interoperability between operators is 
necessary to bring scale to providers 

• Providers certain about short term 
disadvantages - uncertain about how things 
will evolve in long term 

• Operators will not invest or pay – till 
benefits demonstrated 

• Providers will not deliver – till sure they get 
paid 

• Small provider – we can adhere to what is 
required – deliver specialized services 

• A platform for experimentation, testing, 
demonstrating innovations – a neutral lab 

• A prototype environment where it is easy to 
develop and implement  

• Certifications – from experimentation 
• Allowing experimentation and learning 
• Mobilize providers with use-case method – 

invite providers to solve issues 
• To test in an SDO environment 

Experimentation  
(will reduce 

uncertainty and 
enable innovation 

and growth) 

• Increased innovation leads to increased 
competition 

• Testing is expensive 
• Not possible to get competitors to 

contribute within same environment – 
assessing competitors’ innovations and 
works is weird 

• No willingness to fund experimentation lab 

• Large developer community – critical mass 
• Large providers want to learn – put pressure 

on providers 
• Open interfaces – demonstrated feasibility 
• Active sharing of insight with all stakeholders 
• Continuous collaboration in research projects 
• Use of code repositories like GitLab 
• Available SW development environment, 

with e.g., downloadable virtual machines, 
sample topologies, graphical interfaces 

• Code is well explained and advertised – good 
enablement of using code 

• Connect to – be part of larger community 
• Code is published, shared, maintained, and 

governed in a professional way 
• Common rules and recommendations for 

coding are established and shared 

Knowledge 
exchange and 
development 

(will build insight 
on all other driving 
factors, knowledge 

externalities) 

• Small developer community 
• Open-source code not published properly 
• Not properly implemented to SDOs 
• Developers do not risk joining a small 

project – coding is wasted 
• Code does not have the umbrella, the 

ecosystem outside your own project/code 
• It is a huge effort to come up to speed on 

open-source coding for domain 
• Operators are locked into knowledge 

associated with existing providers 
• Operators are locked into HW regime – have 

no SW expertise 

• Operators adhere to use of, demand, and use 
open interfaces – from all providers 

• HW providers adhere to the use of open 
interfaces 

• Large developer community 
• Open source turns out to be far more 

efficient production of code 
• Interface standards are good – 

implementations are 
compatible/interoperable 

• It is easier to implement new interfaces and 
reprogram HW with network 
programmability – less costly to adhere to 
new standards and interfaces 

• Large providers loose contracts when not 
adhering to open interfaces /standards 

Open technologies 
(will ease ability to 
innovate and grow) 

 
 

• Large providers are too fond of licensing 
model – the potential customer lock-in is 
attractive 

• Not invented here syndrome 
• Open will not function anyway – stay with 

current (open=naive) 
• It is only semi-open – there is proprietary 

software on top 
• Exclusive knowledge 
• Code is eventually, not disclosed 
• HW and SW providers reluctance to adhere 

to open source 
• For providers, to implement a new open 

standard interface – is costly 
• Software is not good enough 
• Standards are only ideas – not realized 
• Open-source code/standards are not good 

enough – allow variety 



D2.1 - Preliminary requirements, architecture design, techno-economic studies, 
and data models 

 

© 2021 - 2023 TeraFlow Consortium Parties  Page 32 of 81 

Enabling mechanisms  Driving factors for 
TeraFlow OS 

diffusion 

Blocking mechanisms  

• Smaller providers innovation and 
competitiveness – pressure on large 
providers  

• Easy to join for small NetApp providers 
• Operators are positive to open-source – 

frontrunners 
• Well-managed implementation into SDOs 
• System functions across standards/SDOs 
• Compatibility between HW and SW 
• Mutual knowledge between HW and SW 

providers 
• Software is good 
• Black box components (closed embedded 

code) are easily provided in open 
environment 

• Ensure sustainability and maintenance by 
being part of and SDO 

• Ensuring standards are realized – not just 
ideas 

 

• SW for too specific areas is high risk 
• Operators  

- do not adopt e.g., TeraFlow OS 
- think network is “baby” – good 
relationships with providers 
- dependent on providers 
- are fine to buy HW and press prices 
(success story)  
- think TeraFlow OS is too small 
- do not trust the “providers” 
- do not have the SW knowledge – will have 
to buy externally anyway 
- are bad at specifying – specify failures 
- do not have a big enough pain point 
- quality levels too uncertain, network 
assurance at risk 

• Resistance towards changing a stable system  
• Code is costly to maintain 

• Observed operators and providers innovation 
diffusion – increased profits 

• Value (creation with) of open-source SW 
increases when shared 

• Traction for open/standard interface – not 
important that TeraFlow OS wins 

• Succeed/solve openness in IP network – 
other layers will follow 

• Many other components have access to, and 
start to use the interfaces 

Network 
effects/externalities 

(critical mass 
reached, leading to 

further increase) 

• No traction  

4.5.1. Further work with TeraFlow OS ecosystem 

It is essential to cultivate enabling and mitigate the blocking mechanisms to ensure the evolution of 
the TeraFlow OS ecosystem. Currently, the TeraFlow project can follow up on four themes: 

• Aim to enable good exchange of and development knowledge about the technology in 
question in the wider community. This would motivate project partners and mobilize yet 
others to contribute to knowledge development 

• Aim to clarify how TeraFlow OS can be ensured sustainability to decrease the perceived risk 
of contributing. E.g., it is risky to participate in an open-source initiative that will not take off. 
This would also increase the legitimacy of the initiative 

• Establish a trustworthy story for how the total market may grow 
• Elaborate on roles in TeraFlow OS ecosystem and assess their future business models and 

profit opportunities 

More concretely, the next step in the ecosystem analysis will be to:  

• Continue interviews and data collection and draw further learnings  
• Further clarify the interdependencies in the TeraFlow OS ecosystem 
• Describe potential future roles in more details, and how their business models can be aligned 

with the intentions of TeraFlow OS ecosystem. 
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• Clarify how a future TeraFlow OS can be governed and maintained 
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5. Requirements for the TeraFlow SDN Controller 
In this section, the different requirements for the TeraFlow SDN Controller are introduced. They have 
been classified as: 

• Functional Requirements: describe what the system must or must not do and can be thought 
of in terms of how the system responds to inputs. 

• Non-functional Requirements: are requirements that specify criteria that can be used to judge 
the operation of a system rather than specific behaviours. They are contrasted with functional 
requirements that define specific behaviour or Functional Requirements. 

In order to have them ordered, the same use case topics as described in Section 4 are used. 

5.1.1. Inventory 

• [REQ-INV-01] The SDN controller shall be able to recover information and state about 
hardware components of network elements and the logical configuration of the devices, 
including logical interfaces configuration from one node and all the parameters related to 
interface configuration (description, IP addressing, VLAN, etc.) of a node.  

• [REQ-INV-02] The SDN controller shall offer the retrieved inventory to a client. 

5.1.2. Topology 

• [REQ-TOP-01] The SDN Controller shall provide a set of abstractions to represent several views 
of the network topology.  

• [REQ-TOP-02] The SDN controller shall be able to collect the required information for 
providing network topology from the Network Devices or configuration files. 

5.1.3. Service 

• [REQ-SERV-01] The SDN Controller shall be able to manage the life cycle of L2VPN and L3VPN 
services [MUS21]. These are widely used to deploy 5G fixed and enterprise services mostly 
because several traffic discrimination policies can be applied in the network to transport and 
guarantee the right SLAs to the mobile customers. 

• [REQ-SERV-02] An L3VPN service shall create a virtual routing and forwarding network 
instance (VRF) in each of the nodes involved in service deployment. This routing instance 
allows routing information to be propagated between the sites involved in the service. 

5.1.4. Monitoring 

Notification subscription requirement: 

• [REQ-MON-01] TeraFlow OS shall allow external subscriptions to the notification service to 
enable visualisation of relevant data at a higher level of abstraction, thus assisting the 
TeraFlow OS in identifying potential problems and gaining dynamicity. Moreover, external 
agents (subscribers) shall be notified of events related to network/slice data (e.g., topology or 
connectivity) depending on the nature of the subscription, see below. 
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Topology monitoring requirements: It is expected that the SDN controller shall gather data on 
topology events and be able to use the notification system to inform subscribers. The basic preliminary 
actions to be monitored/notified in this regard are: 

• [REQ-MON-02] Addition of a new topology element (e.g., topology, link, node, node edge 
point). 

• [REQ-MON-03] Modification of parameters of existing elements in the topology (e.g., 
scaling/migration of resources). 

• [REQ-MON-04] Status of operational changes of existing elements (e.g., up/down status), 
assuming both control plane level (network element-SDN controller) and data plane level 
(inter network components).  

• [REQ-MON-05] Deletion of elements in the topology.  

Connectivity monitoring requirements: The SDN controller will be able to collect data related to the 
connectivity of the elements in two different views: network or slice. In this regard, the main features 
to be monitored (or notified to subscribers) are: 

• [REQ-MON-06] New connectivity-service element inserted/removed in/from the 
network/slice.  

• [REQ-MON-07] Status change of existing connectivity-service element in the network/slice.  
• [REQ-MON-08] Status change of the switching conditions of an existing connection element 

in the network/slice. 

Microservice life-cycle monitoring requirements: The SDN controller will report on metrics that 
inform on the lifecycle operations of the microservices within the TeraFlow OS deployment. 
Functionalities that shall be monitored/notified according to the typical phases of a microservices life 
cycle are: 

• [REQ-MON-09] Downshifting monitoring/notification, cloud-to-edge operations shall be 
notified to subscribers to guarantee cloud-to-edge migrations.  

• [REQ-MON-10] Runtime monitoring/notification will be targeted to enable external 
monitoring of microservice’s runtime metrics usage, e.g., power, CPU, storage, memory, or 
bandwidth. 

• [REQ-MON-11] Edge-to-cloud load balancing monitoring/notification, subscribers shall be 
notified of edge-to-cloud migration operations when required. 

5.1.5. Traffic Engineering 

• [REQ-TE-01] The SDN controller should configure the compatible devices through the device 
management component so they can connect to the PCE. 

• [REQ-TE-02] The SDN controller should build a traffic engineering database (TED). 
• [REQ-TE-03] The SDN controller should expose an API to create, modify and delete segment 

routing LSPs. 
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5.1.6. Automation 

Network management requirements: 

• [REQ-AUTO-01] Automatic topology discovery and inventory tracking of both physical and 
virtual network elements. 

• [REQ-AUTO-02] Automated configuration and management through NBI (e.g., REST/gRPC) 
and SBI (e.g., NETCONF/YANG) interfaces based on open standards. 

Service provisioning requirements: 

• [REQ-AUTO-03] Automatic creation and management of network services specified via an 
open standard NBI, as well as communicating, through its SBI, with all the network elements 
needed to implement the service. 

• [REQ-AUTO-04] Automated association of a network service to one or more flows. 

Network operations’ requirements: 

• [REQ-AUTO-05] Automatically deploy a Network Operating System (NOS) and a base 
configuration when a new network element is added to the network, such that the network 
element enters in production without human configuration. 

• [REQ-AUTO-06] Remotely upgrade the entire NOS or some of its components when a vendor 
releases a new version. 

• [REQ-AUTO-08] Run-time and secure rollback version recovery when a NOS needs to be 
upgraded/downgraded in response to a detected problem. 

• [REQ-AUTO-09] Run-time NOS migration from one vendor to another.  
• [REQ-AUTO-10] Automatic provisioning of basic white box configuration, common across 

multiple white box vendors. 

System stability requirements: 

• [REQ-AUTO-11] Automatically perform rollback flow state recovery operations in case of a 
misconfiguration or race condition 

• [REQ-AUTO-12] Automatically translate data stemming from detected attacks to specific 
remedy actions. 

• [REQ-AUTO-13] Automatically detect network elements with anomalous behavior. 

5.1.7. Policy 

• [REQ-POL-01] The SDN controller shall allow network operators to easily create policy rules. 
Each policy rule will be comprised of high-level policy conditions (i.e., traffic selectors) and 
actions (i.e., traffic treatments) and will be triggered upon a network event. 

• [REQ-POL-02] A policy rule shall be associated with a service ID. 
• [REQ-POL-03] A policy rule shall be associated with a policy state, which indicates whether 

this policy is (i) planned for enforcement, (ii) actively enforced, or (iii) inactive. 
• [REQ-POL-04] A policy rule shall be associated with a policy type, indicating whether this policy 

applies to a single device (I.e., device-level policy) or a network segment (i.e., network-wide 
policy). 
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• [REQ-POL-05] A policy rule shall be associated with a priority, which indicates the order of this 
policy in a broader list of policies applied to the data plane. 

• [REQ-PO-L06] A policy rule shall be associated with a timeout, which indicates the amount of 
time for this policy to remain active. After the timeout expires, the state of this policy is put 
on hold, after a data plane update ensures that no flow rules of this policy remain active. In 
case of no timeout specified, a policy is characterized as permanent. To revoke such as policy, 
an explicit policy deletion must be issued by the TeraFlow controller. 

• [REQ-POL-07] Once a policy rule is mapped and applied to a service, the SDN Controller will 
automatically associate this rule with a set of device IDs. This way, device, and service 
(re)configuration will be co-scheduled in order to enforce this policy. 

5.1.8. Cybersecurity 

Data gathering requirements: 

• [REQ-CYB-01] The network traffic shall be captured by nodes themselves or based on 
mirroring techniques. 

• [REQ-CYB-02] Telemetry and network flows are processed to extract statistical information 
including the information per packet, per network flow, and per protocol (TCP/UDP). 

• [REQ-CYB-03] Statistical information extracted from telemetry and network flows is used as 
data source to ML-based Cybersecurity components. 

Interface requirements: 

• [REQ-CYB-04] The ML-based Cybersecurity solution notifies the TeraFlow SDN controller if it 
detects a malicious activity (i.e., network intrusions and harmful connections). 

• [REQ-CYB-05] A classification of the malicious activity will be provided (e.g., a DDoS attack 
connection, a cryptomining attack connection, a vulnerability scanner attack, an unknown 
attack) jointly with a confidence value (e.g., a probability). 

• [REQ-CYB-06] After a malicious activity is detected and sent to the TeraFlow SDN controller, a 
countermeasure should be provided to secure the network. 

Machine Learning requirements: 

• [REQ-CYB-07] Edge nodes can host ML-based inference engines to detect cybersecurity 
attacks locally. 

• [REQ-CYB-08] Edge nodes hosting ML-based inference engines can provide predictions jointly 
with telemetry and statistical information. 

• [REQ-CYB-09] ML-based inference engines will be resilient to adversarial attacks that will try 
to fool them to produce incorrect inferences. 

5.1.9. Distributed Ledger and Smart Contracts 

• [REQ-DLT-01] The TeraFlow SDN Controller shall be able to interact with other SDN Controllers 
using DLT to rent resources from respective local carriers and local carriers may lease their 
owned networks to each other to achieve better network utilization efficiency. 

• [REQ-DLT-02] A network service is configured in a timely way to meet traffic matrix 
requirements requested by its tenants.  
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• [REQ-DLT-03] The distributed ledger will record device information such as software status 
(e.g., software/firmware version) and runtime information (e.g., remote attestation, tamper 
detection).  

• [REQ-DLT-04] The distributed ledger will enable tamper detection and ensure the 
independent verification of device status, history, and details (remote attestation). 

5.1.10. Transport Network Slicing 

• [REQ-SLI-01] The TeraFlow SDN Controller shall provide transport network slice life-cycle 
management. Users may formulate transport network slices based on the demand for services 
and time to schedule the resources from the entire network's perspective flexibly. Several 
underlying services might be offered for a transport network slice, including L3VPN, MPLSVPN, 
or VLAN constraints. 

• [REQ-SLI-02] The TeraFlow SDN Controller shall provide vertical industry slicing, which is a 
category of network slicing that is emerging due to the high demand for private high-speed 
network interconnects for industrial applications. In this scenario, the biggest challenge is to 
implement differentiated optical network slices based on the requirements from different 
industries.  

• [REQ-SLI-03] Isolation shall be provided through resource partitioning and/or robustness 
techniques, e.g., dedicated resources, shared resources with safeguards, or reserved backup 
paths. Examples include traffic separation via VPNs (L2/L3VPN, EVPN), interference avoidance 
via network capacity planning, traffic policing or shaping, and prioritization in resource 
utilization.  

• [REQ-SLI-04] Hard isolation can be achieved by provisioning dedicated fibres, which is feasible, 
but very expensive. Therefore, physical splitting (e.g., in time or frequency) can be used. For 
instance, in optical networks, where full lambdas can be isolated (WDM), or TDM techniques 
by assigning specific time slots to specific slices.  

• [REQ-SLI-05] Soft isolation solutions shall rely on the simple separation of traffic delivery such 
as MPLS or VLAN tagging. These mechanisms offer separation, but not isolation performance 
guarantees. The SDN controller should be able to create soft network slices, via creation of 
multiple VRFs and VSIs on a network element (physical or virtual), as described in section 4 of 
the TIP MUST SBI Spec. [REQ-SERV-01], and [REQ-SERV-02] should be supported within these 
soft network slices. 

• [REQ-SLI-06] The design of intermediate isolation solutions between hard and soft isolation 
may be classified into two classes: i.) Link layer (Layer 1.5 / Layer 2) technologies such as Flex 
Ethernet (FlexE), dedicated queuing, and TSN. ii.) Network layer technologies such as MPLS-
TE, Deterministic Networking (DetNet), Segment Routing (SR). 

5.1.11. Compute 

From a macroscopic perspective, the Compute component is the front-end to take over of the 
interaction of the Teraflow OS instance with an external NFV orchestrator such as the OSM 
implementation. The aim is to automatically receive and process connectivity service requests from 
the NFV Orchestrator (e.g., creation, deletion, and removal) and then interact with other Teraflow OS 
components to meet such requested connectivity service operations. To this end, the following 
requirements need to be fulfilled:  
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• [REQ-COM-01] The Compute component should support a well-defined API (including a data 
model and protocol) to enable the interaction with an external NFV orchestrator 
implementation. 

• [REQ-COM-02] The connectivity services requested from the NFV Orchestrator should support 
both L2VPN and L3VPN flows. 

• [REQ-COM-03] The API between the NFV Orchestrator and the Compute Component should 
support the complete lifecycle management of the connectivity services. This encompasses 
the creation of point-to-point connectivity services specifying the service identifier, 
connection endpoints, transport layer and associated attributes (e.g., VLAN), traffic 
engineering details (e.g., guaranteed bandwidth, maximum tolerated latency, etc.), etc. 

• [REQ-COM-04] The Compute component should keep track of the active connectivity services 
(e.g., in a dedicated repository) to handle the operations arriving from the NFV orchestrator 
such as removing or updating a specific connectivity service. 

• [REQ-COM-05] The Compute component should offer a mapping function to “translate” the 
incoming connectivity service operation based on the defined API (i.e., protocol and encoding) 
to the commands and messages based on gRPC to interact with other Teraflow OS 
components (e.g., Service). 

5.1.12. Inter-Domain 

The Inter-Domain use case describes the interaction of a TeraFlow OS instance with peer TeraFlow OS 
instances which manage different network domains. The requirements include: 

• [REQ-INT-01] Before exchanging any requests, two peering SDN Controller shall authenticate 
each other. 

• [REQ-INT-02] After receiving an inter-domain subslice request from a peering SDN Controller, 
the SDN Controller analyses the order and – if the order can be fulfilled – uses the 
corresponding internal interfaces to (partially) satisfy the request. 

• [REQ-INT-03] Similarly, when a modification of an inter-domain E2E service is requested, the 
SDN Controller shall use the corresponding internal interfaces to propagate the modification 
request. 

• [REQ-INT-04] In the context of workflows related to the preparation and activation of an inter-
domain service as well as the modification of services, interactions with the service catalogue 
(available service templates) and the service inventory (existing service instances) are 
necessary. 

5.1.13. TeraFlow SDN Controller Security 

Traditional SDN controllers, implemented as monoliths, provide authentication and authorization 
interfaces for external users and components (GUIs and APIs). Since those controllers are monoliths, 
securing the external interfaces is mostly sufficient for securing the controller. Internal 
communication between components is performed through programming-language-level calls and 
there are (mostly) no security concerns regarding those calls. But these might include programming 
languages errors, security of the hosts running the System, or even memory errors. 

TeraFlow, on the other hand, adopts a cloud-native architecture. This means that different 
components of TeraFlow will communicate through standardized network protocols, and different 
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components might be running in different machines in the network. Therefore, besides the usual 
authentication and authorization procedures commonly found in SDN controllers, TeraFlow shall 
ensure the secure message exchange among components. 

• [REQ-SEC-01] The TeraFlow SDN controller shall provide means for external user/entity 
authentication. These users/entities can be people accessing the TeraFlow GUI, or external 
clients (automated code) using TeraFlow APIs. 

• [REQ-SEC-02] The TeraFlow SDN controller authentication procedure shall maintain a record 
of the action permissions that are available for each one of the users/entities registered. 

• [REQ-SEC-03] The TeraFlow SDN controller shall provide means for user authorization. This 
means that any component shall be able to obtain a handle for the currently authenticated 
user, including its permissions, to determine whether the current user has enough permissions 
to execute a given operation. 

• [REQ-SEC-04] The TeraFlow SDN controller shall have mechanisms that allow the components 
to authenticate among themselves, therefore ensuring that the internal communication 
among components cannot be intercepted, modified, or falsely generated by a third-party 
malicious entity. 

5.2. Non-Functional Requirements 

We have analysed the following non-functional requirements: performance, usability, scalability, 
security, and portability. 

5.2.1. Performance 

• [REQ-PERF-01] The TeraFlow SDN controller shall provide an increase by an order of 
magnitude (x10) of the flow processing capabilities of current SDN controllers. This results in 
the ability to handle a Tera of connectivity services. 

• [REQ-PERF-02] The SDN controller shall provide sufficient processing and sample rates of 
metrics that does not limit: i) the achievement of the objectives in the use cases; and ii) the 
timely identification and notification of potential problems, maximising the possibilities for 
mitigation. The expected rates shall be determined based on three criteria: i) objectives of the 
use case; ii) nature of the metric; and iii) priority of the metric.  

• [REQ-PERF-03] Cloud-native flow management shall be provided with a control plane latency 
below 10 milliseconds. The SDN controller shall increase multi-layer resource allocation 
efficiency by 30% due to seamless deployment of VPN services. 

• [REQ-PERF-04] Proactive SDN traffic optimization by means of ML algorithms (e.g., collection 
of real-time KPI data and use of ML to forecast where and when a problem is likely to occur, 
to reroute traffic before it happens). The SDN Controller shall provide a reduction of 25% 
resource usage due to ML-based traffic optimization. 

• [REQ-PERF-05] The introduction of follow-me and context-aware network connectivity 
services shall generate at least a 10% reduction in network flow requests, which are generated 
due to network mobility. 

• [REQ-PERF-06] Novel algorithms for latency budgets as a function of application requirements. 
These algorithms shall improve network consumption by 30% by providing joint strategies for 
allocation of compute and network resources. 
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• [REQ-PERF-07] Reduction of energy consumption by 30% thanks to algorithms that combine 
centralized computing elements and low-energy networks, as well as low-cost edge 
computational resources. 

• [REQ-PERF-08] Improve network resource usage by 30% by adopting multi-tenancy resource 
allocation algorithms. 

5.2.2. Usability 

• [REQ-USA-01] The TeraFlow SDN controller shall provide a user interface that allows triggering 
a default service within seconds. 

• [REQ-USA-02] The SDN controller shall provide a system to enable subscribers to visualize the 
metrics in a friendly and customizable manner according to their needs.  

5.2.3. Scalability 

• [REQ-SCA-01] The SDN controller shall provide autonomous replication of micro-services to 
support high numbers of incoming requests.  

• [REQ-SCA-02] Optimized consensus algorithms for permissioned ledgers that scale above 100 
nodes. Privacy-aware smart contracts for network management tasks, and in particular, the 
ones related to network resources and services, thus providing forensic evidence in multi-
tenant scenarios. 

5.2.4. Security 

• [REQ-SEC-01] Experimentally verified identification of known physical-layer attacks with 
99.9% or higher accuracy and of previously unseen attacks with 90% or higher accuracy with 
the inaccuracy fully compensated through window-based attack detection. Protection 
mechanisms will be able to interact with Flow Management, in the order of milliseconds, to 
create, modify, or remove potential flow threats. ML-based attack detectors shall be resilient 
to advanced threats, especially to adversarial attacks. 90% of attacks detected in less than 0.5 
seconds. 

• [REQ-SEC-02] Edge and central ML-based detectors operating in optical, network, and 
transport layers to promptly detect and mitigate attacks. Increase of protection reaction 
agility by reducing centralised response latency by 30%. ML-based threat detectors will use 
AutoML techniques to reduce model complexity, thus decreasing resource usage by 25% in 
comparison with current techniques. 

5.2.5. Reliability 

• [REQ-REL-01] The SDN controller shall monitor micro-services and per-flow status to apply 
healing mechanisms (e.g., component restart, flow redirection) both from a control and a data 
plane perspective. 
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5.2.6. Portability 

Portability non-functional requirements refer to the usability of the same software in different 
environments. 

• [REQ-PORT-01] The SDN Controller shall run on top of a Kubernetes cluster deployed over an 
UBUNTU 20.04 LTS server. The minimal required hardware shall be 4vCPU, 32Gb RAM and 
1Tb HD. 

• [REQ-PORT-02] User Interface shall be accessible for Firefox web browser and compliant with 
W3C standards. 

• [REQ-PORT-03] Integration of the TeraFlow OS to support network visibility and management 
in compute infrastructure (e.g., Kubernetes, OpenNess, and Akraino). Moreover, TeraFlow will 
develop a specific plugin for NFV and MEC orchestrators to support integration with the 
TeraFlow SDN controller. 
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6. Proposed Architecture 
This section presents the proposed architecture for the TeraFlow SDN controller. First, we will 
provide an overall view of the architecture. Secondly, we proceed with per-component 
architectures, with a special focus on RPC and data models involved. Finally, we present several 
workflows that involve multiple component interaction. 

6.1. Overall Architecture 

The cloud-native software architecture is based on container-based services (containers are a 
lightweight virtualization technique), which are deployed as microservices and managed on elastic 
infrastructure through agile DevOps processes and continuous delivery workflows. These micro-
services are a software development technique that structures an application as a collection of 
interconnected and related services. In a micro-services architecture, services are simple and detailed, 
and the protocols are lightweight. 

Figure 5 provides an overview of the proposed TeraFlow OS architecture. The TeraFlow OS is a cloud 
native SDN controller that is composed of multiple micro-services. Microservices interact with each 
other using a common integration fabric. Moreover, in the context of B5G networks, the TeraFlow OS 
can interact with other network elements, such as NFV and MEC orchestrators, as well as OSS/BSS. 
The TeraFlow OS controls and manages the underlying network infrastructure, including transport 
network elements (optical and microwave links), IP routers, as well as compute nodes at edge or public 
cloud infrastructures. 

The TeraFlow OS cloud-native architecture provides multiple benefits which have already been clearly 
demonstrated in other cloud computing applications. The most important benefit is application 
resiliency, where microservices are monitored and restarted in case of misbehaviour. Another benefit 
is application scalability, which accommodates an increasing number of requests (i.e., load), with the 
deployment of new microservice instances when required. To detail the different TeraFlow OS 
functionalities (each one based on a single or multiple micro-service(s)), they have been divided into 
core and netApps functionalities. This classification is based on the degree of inter-relationship of 
these micro-services, as explained below. 

TeraFlow core micro-services are tightly interrelated and collaborate to provide a complete smart 
connectivity service. Once a Transport Network Slice request is received, the Slice Manager translates 
this request to the Service component. Moreover, the slice request is recorded by the DLT component 
in the blockchain. The Service component computes the necessary connectivity services and requests 
the necessary network element configuration (e.g., NETCONF, P4, OpenFlow), or interacts with 
underlying SDN controllers through the Device Management component. These configurations are 
also recorded using the Distributed Ledger component. Policies per flow are computed in Traffic 
Engineering (TE) component and verified, and network elements are monitored for anomalous 
behaviour in the Automation and Policy Management components. The Context Manager is 
responsible for handling the distributed non-relational database that contains all necessary 
information (including slice and/or flow requests, network topology, and network elements’ 
configuration). 
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Figure 5 Overall proposed architecture 

TeraFlow netApps consume TeraFlow core micro-services. The TeraFlow netApps provide the 
necessary carrier-grade features with a dedicated focus on: load-balancing, cybersecurity, auto-
scaling, self-healing, and inter-domain smart connectivity services. Load-balancing allows the 
distribution of flow and slice requests among the micro-services component replicas. The 
Cybersecurity component provides AI/ML-based mechanisms to detect network intrusions and 
harmful connections, and it provides countermeasures to security incidents. Moreover, the 
Cybersecurity component will be able to protect itself against adversarial attacks that try to spoof the 
detector’s ML components. The Auto-Scaling component focuses on the autonomous replication of 
micro-services to support high numbers of incoming requests. The Self-Healing component monitors 
micro-services and per-flow status to apply healing mechanisms (e.g., component restart, flow 
redirection) both from a control and a data plane perspective. Finally, the Inter-Domain micro-service 
allows the interaction of a TeraFlow OS instance with peer TeraFlow OS instances which manage 
different network domains. 

6.2. Per Component Template 

We have prepared the following template to provide the detailed information per component. This 
allows to detail the architectural design of the component and is used in the subsequent sections. 

Name:  
Objective:  
Requirements:  
References:  
Responsible 
(and 
collaborators): 

 

Provided 
Operations: 

(outcome1, outcome2) operation (input1, input2) 
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Internal 
models: 

 

6.3. Detailed Architecture 

In this section we describe the components, organized as CoreApps and netApps. 

Reference to protocol buffers available at: https://gitlab.com/teraflow-h2020/controller 

6.3.1. CoreApps 

CoreApps involve the following components: Context, Monitoring, Device, Service, Automation, 
Policy, Slice, and DLT. 

6.3.1.1. Context 

Name: Context 
Objective: Stateful record of the necessary information.  

Provide the external NBI to obtain and manipulate TeraFlow status. 
Requirements: Shall include a non-SQL database (e.g., MongoDB). 

Internal interface shall be provided in gRPC. 
Shall provide NBI for external apps in REST HTTP. 

References:  
Responsible 
(and 
collaborators): 

CTTC, TID 

Provided 
Operations: 

ListContextIds(Empty) returns( ContextIdList ) {} 
ListContexts(Empty) returns( ContextList) {} 
GetContext(ContextId ) returns( Context) {} 
SetContext(Context) returns( ContextId) {} 
RemoveContext(ContextId ) returns( Empty  ) {} 
GetContextEvents(Empty) returns(stream ContextEvent) {} 
ListTopologyIds(ContextId ) returns( TopologyIdList) {} 
ListTopologies(ContextId ) returns( TopologyList) {} 
GetTopology(TopologyId) returns( Topology ) {} 
SetTopology(Topology) returns( TopologyId ) {} 
RemoveTopology(TopologyId) returns( Empty  ) {} 
GetTopologyEvents(Empty) returns(stream TopologyEvent ) {} 
ListDeviceIds(Empty) returns( DeviceIdList) {} 
ListDevices(Empty) returns( DeviceList ) {} 
GetDevice(DeviceId) returns( Device ) {} 
SetDevice(Device ) returns( DeviceId ) {} 
RemoveDevice(DeviceId) returns( Empty  ) {} 
GetDeviceEvents(Empty) returns(stream DeviceEvent) {} 
ListLinkIds(Empty) returns( LinkIdList ) {} 
ListLinks(Empty) returns( LinkList ) {} 
GetLink (LinkId ) returns( Link   ) {} 
SetLink (Link ) returns( LinkId ) {} 
RemoveLink(LinkId ) returns( Empty  ) {} 

https://gitlab.com/teraflow-h2020/controller


D2.1 - Preliminary requirements, architecture design, techno-economic studies, 
and data models 

 

© 2021 - 2023 TeraFlow Consortium Parties  Page 46 of 81 

GetLinkEvents(Empty) returns(stream LinkEvent) {} 
ListServiceIds(ContextId ) returns( ServiceIdList ) {} 
ListServices(ContextId ) returns( ServiceList) {} 
GetService(ServiceId ) returns( Service) {} 
SetService(Service) returns( ServiceId) {} 
RemoveService(ServiceId ) returns( Empty  ) {} 
GetServiceEvents(Empty) returns(stream ServiceEvent) {} 

Internal 
models: 

Topology 
Device 
Link 

 

Figure 6 is difficult to read, to this means it is available at: https://gitlab.com/teraflow-
h2020/controller/-/blob/develop/proto/uml/context.png 

 

Figure 6 Context data model 

6.3.1.2. Monitoring 

The initial architecture of the TeraFlow monitoring component is depicted in Figure 7, it is formed by 
two main blocks: the Monitoring Core and the Metrics Database. Within the Monitoring Core four 
submodules can be found, the Subscription Manager, the Retriever, the Exporter and the 
Management Database. 

The Retriever is in charge of pulling metrics from all the different monitored components, different 
components will implement different protocols/interfaces for the KPI provisioning, for that reason we 
have included a set of submodules within the retriever that will connects to the monitored elements 
using the required protocols. 

All the extracted data will be stored in the Metrics Database, providing dimensional data with time 
series and key-value pairs in addition to powerful querying and aggregation mechanisms for accessing 
the collected data. The Metrics Database has direct integration with a data visualization tool offering 
a wide variety of visualization panels and real time graphics for better observability. 

The Exporter submodule will be in charge of serving the collected metrics and KPIs to the different 
subscribers. Alongside, the Exporter submodule will also handle the configured alarms for triggering 
notifications based on thresholds and ranges. 

The Monitoring Component will handle the subscriptions from other components, through the 
Subscription Manager submodule located in the Monitoring Core. The Subscription Manager will rely 

https://gitlab.com/teraflow-h2020/controller/-/blob/develop/proto/uml/context.png
https://gitlab.com/teraflow-h2020/controller/-/blob/develop/proto/uml/context.png
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on the Management Database for maintaining the subscription registry in addition to the association 
between metrics and KPIs. 

The following lines describe a more detailed view of the TeraFlow Monitoring component outlining 
the objectives, requirements, provided operations, and internal models. 

 

 

Figure 7 TeraFlow monitoring component initial architecture 

Name: Monitoring 
Objective: Provide sufficient information about network metrics (KPIs) and other relevant 

metrics to assist the life-cycle automation and high performance of the 
components. 

Requirements: Shall be able to monitor multiple KPIs. 
Shall be able to allow external subscriptions to the notification service. 
Shall be able to add, modify and visualize topology, connectivity and 
microservice life-cycle metrics. 

References:  
Responsible(and 
collaborators): 

ATOS 

Provided 
Operations: 

CreateKpi(GetKpiDescriptor) returns(KpiId) 
IncludeKpi (Kpi) returns ()  
MonitorKpi (MonitorKpiRequest) returns () 
GetKpiDescriptor (KpiId) returns (KpiDescriptor) 
GetStreamKpi (KpiId) returns (stream Kpi) 
GetInstantKpi (KpiId) returns (Kpi) 

Internal models: 
(see for 
reference Figure 
8) 

KpiDescriptor 
MonitorKpiRequest 
KpiId 
Kpi 
KpiValue 
KpiList 
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Figure 8 Monitoring data model 

6.3.1.3. Device Manager 

Name: Device 
Objective: Provide inventory information and allow to configure and manage specific 

devices. 
Requirements: Shall be able to handle multiple types of devices. 

Shall be able to perform configuration and management  
References: OpenConfig, IETF  
Responsible 
(and 
collaborators): 

TID, SIAE, INF, VOL, UBI 

Provided 
Operations: 

AddDevice(Device) return (DeviceId) 
ConfigureDevice(DeviceConf) return (DeviceId) 
DeleteDevice(DeviceId) return (Empty) 

Internal 
models: 

Only provides operations. Data models belong to context 
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Figure 9 Device internal data model 

6.3.1.4. Service 

Name: Service 
Objective: Lifecycle management of multiple TeraFlow services. 
Requirements: Provide L3NM, L2NM and ONF Transport API lifecycle management support. 
References:  
Responsible 
(and 
collaborators): 

CTTC, INF, TID 

Provided 
Operations: 

CreateService (context.Service) returns (context.ServiceId) {} 
UpdateService (context.Service) returns (context.ServiceId) {} 
DeleteService (context.ServiceId) returns (context.Empty) {} 
GetConnectionList(context.ServiceId) returns (context.ConnectionList) {} 

Internal 
models: 

 

  

6.3.1.5. Traffic Engineering 

Name: Traffic Engineering 
Objective: Manage Segment routing LSPs 
Requirements: • Create, modify, and delete segment routing LSPs 

• Should interact with the terraflow-os-context component to retrieve 
device and topology information. 

• Should interact with the teraflow-os-device component to configure 
compatible hardware to join the PCE. 

 
References:  



D2.1 - Preliminary requirements, architecture design, techno-economic studies, 
and data models 

 

© 2021 - 2023 TeraFlow Consortium Parties  Page 50 of 81 

Responsible 
(and 
collaborators): 

STR 

Provided 
Operations: 

RequestLSP(service.Service) returns (service.ServiceState) 
UpdateLSP(service.ServiceId) returns (service.ServiceState) 
DeleteLSP(service.ServiceId) returns (context.Empty) 

Internal 
models: 

N/A 

 

This component implements the creation, modification, and deletion of segment routing LSPs on the 
available hardware, considering the given constraints and the available resources. The constraints 
given to the PCE for the calculation of the LSP could be required or desired latency, bandwidth 
consumption and hop count, and if the result should be a strict explicit path or a loose one. Figure 10 
shows the internal design of the component and how it relates with other TeraFlow components. 

 

Figure 10 Traffic Engineering component 

 

6.3.1.6. Automation (ZTP) 

Name: Automation 
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Objective: Automatically add/update a physical or virtual device to/in the network with zero 
manual intervention or local configuration, while ensuring that the correct 
certificates, software, device configuration parameters, and device pipeline 
definition are installed. This component produces role-based device 
configuration, which is sent to the teraflow-os-config component via a 
southbound configuration protocol (e.g., gNMI or NETCONF). 

Requirements: • Shall be able to handle multiple types of devices. 
o Requires interactions with the teraflow-os-device component. 

• Shall be able to receive and validate a DeviceRole from its northbound 
interface 
o Such role-based configuration may be received by an external entity, 

either automatically or manually by a network operator. 
o A gRPC protocol buffer model may describe this API. 

• Shall be able to associate a valid DeviceRole with a physical or virtual device 
in the network 
o This is internal process once a northbound API call is received and before 

it is communicated to the configuration component. 
• Shall be able to send a DeviceRole to the configuration component through a 

southbound API. 
o Requires interactions with the teraflow-os-config component. 
o A gNMI API may be used for this inter-component communication. 

• Shall be able to perform device management. 
o Requires interactions with the teraflow-os-control component. 
o For table-based devices, a table pipeline setup is required. 

• Shall be able to monitor the behaviour of the underlying devices. 
References:  
Responsible 
(and 
collaborators): 

UBI, UPM, TID, TNOR 

Provided 
Operations: 

ZtpGetDeviceRole(DeviceRoleId) returns (DeviceRole) {} 
ZtpGetDeviceRolesByDeviceId(context.DeviceId) returns (DeviceRoleList) {} 
ZtpAdd(DeviceRole) returns (DeviceRoleState) {} 
ZtpUpdate(DeviceRole) returns (DeviceRoleState) {} 
ZtpDelete(DeviceRole) returns (DeviceRoleState) {} 
ZtpDeleteAll() returns (DeviceDeletionResult) {} 

Internal 
models: 

The main model of this component is the DeviceRole, which contains additional 
internal models, while exploiting models provided by other components (see for 
reference Figure 12). 

 

Figure 11 shows the internal design of Automation component. 
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Figure 11 Automation component internal architecture. 

 

Figure 12 Automation data model. 

6.3.1.7. Policy Manager 

Name: Policy 
Objective: Automatically translates high-level policy rules to actual configuration applied to 

either physical or virtual devices. A policy rule may generate configuration across 
an entire network domain, thus may need to configure multiple devices per policy. 
The component architecture is depicted in Figure 13. 

Requirements: • Shall be able to handle multiple types of devices. 
o Requires interactions with the teraflow-os-device component. 

• Shall be able to perform device management. 
o Requires interactions with the teraflow-os-device component. 
o For table-based devices, a table pipeline setup is required. 
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• Shall be able to receive and validate a PolicyRule from its northbound 
interface. 
o Such policy rule may be received by an external entity, either 

automatically or manually by a network operator.  
o A gRPC protocol buffer model may describe this API. 

• Shall be able to verify that a given policy matches to a set of flows. 
o Requires interactions with the teraflow-os-context component to acquire 

the active flows. 
• Shall be able to enforce a policy. 

o Requires interactions with the teraflow-os-context component to 
install/update/delete flows according to a policy. 

References:  
Responsible 
(and 
collaborators): 

UBI, ODC, UPM, TID, TNOR 

Provided 
Operations: 

PolicyAdd (PolicyRule) returns (PolicyRuleState) {} 
PolicyUpdate (PolicyRule) returns (PolicyRuleState) {} 
PolicyDelete (PolicyRule) returns (PolicyRuleState) {} 
GetPolicy (PolicyRuleId) returns (PolicyRule) {} 
GetPolicyByDeviceId (context.DeviceId) returns (PolicyRuleList) {} 
GetPolicyByServiceId (service.ServiceId) returns (PolicyRuleList) {}  

Internal 
models: 

The main model of this component is the PolicyRule, which contains additional 
internal models, while exploiting models provided by other components (see for 
reference Figure 14). 

 

 

Figure 13 Policy component internal architecture. 
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Figure 14 Policy data model. 

6.3.1.8. Slice Manager 

Name: Slice 
Objective: Handle Transport Network Slice lifecycle 
Requirements: [REQ-SLI-01] - [REQ-SLI-06] 
References: draft-ietf-teas-ietf-network-slices-03 

draft-liu-teas-transport-network-slice-yang 
Responsible 
(and 
collaborators): 

(VOL), TNOR, UBI 

Provided 
Operations: 

CreateUpdateSlice ( TransportSliceRequest ) returns (SliceId) {} 
DeleteSlice ( TransportSliceRequest ) returns () {}  

Internal 
models: 

TransportSliceRequest (see for reference Figure 15). 

 

https://datatracker.ietf.org/doc/draft-liu-teas-transport-network-slice-yang/
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Figure 15 Slice data model 

6.3.1.9. Distributed Ledger 

Name: Distributed Ledger 
Objective: Provide distributed ledger to record, query, and process relevant data for 

network management and detection of compromised edge-devices.  
Requirements: [REQ-DLT-01]--[REQ-DLT-04] 
References:  
Responsible 
(and 
collaborators): 

NEC, CTTC 

Provided 
Operations: 

RecordToDlt ( DltRecord ) returns ( RecordStatus ) {} 
GetFromDlt ( DltRecordId ) returns ( DltRecord ) {} 

Internal models:  DltRecord, DltStatus (see for reference Figure 16). 
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Figure 16 DLT component data model 

6.3.2. netApps 

NetApps involve the following components: Optical Centralized Attack Detector, Optical Attack 
Mitigation Processor, Attack Inference, L3 Centralized Attack Detector, L3 Distributed Attack Detector, 
L3 Fast Attack Mitigation Processor, Compute, and Inter-domain. 

6.3.2.1. Optical Centralized Attack Detector 

Name: Centralized Attack Detector 
Objective: Provide physical layer attack detection at the optical layer and provide a 

consolidated attack detection mechanism based on the distributed attack 
detector. 

Requirements: • Shall consume/subscribe to security-related data from the TeraFlow 
Monitoring core component. 

• Shall process the optical KPIs (i.e., optical performance monitoring data) 
from the monitoring component and generate a security status of the optical 
channels. 

• Shall report detected attacks to the optical attack mitigation processor 
component. 

• Shall report security status to the TeraFlow Monitoring core component. 
References:  
Responsible 
(and 
collaborators): 

CHA 

Provided 
Operations: 

rpc DetectAttack (Empty) returns (Empty) {} 
rpc NotifyServiceUpdate (Service) returns (Empty) {} 
rpc ReportSummarizedKpi (KpiList) returns (Empty) {} 
rpc ReportKpi (KpiList) returns (Empty) {} 

Internal 
models: 

Only provides operations. Data models belong to service, monitoring, and optical 
attack mitigation processor. 
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6.3.2.2. Optical Attack Mitigation Processor 

Name: Optical Attack Mitigation Processor 
Objective: Compute attack remediation solutions based on the physical layer attack 

detection performed by other components. 
Requirements: • Shall receive attack notifications (e.g., from the optical centralized attack 

detection component); 
• Shall compute contextual attack responses; 
• Shall communicate with the Service, Automation & Policy Manager 

components to perform attack countermeasures. 
References:  
Responsible 
(and 
collaborators): 

CHAL 

Provided 
Operations: 

rpc NotifyAttack (AttackDescription) returns (AttackResponse) {} 

Internal 
models: 

This component contains two models: AttackDescription and AttackResponse 
(see for reference Figure 17). 

 

 

Figure 17 Optical attack mitigator data model 

6.3.2.3. Optical Attack Inference 

Name: Attack Inference 
Objective: Performs the anomaly detection inference based on a set of samples. The 

implementation currently uses an unsupervised learning algorithm for anomaly 
detection (i.e., DBSCAN) that is used to detect attacks based on optical 
performance monitoring data. The design of this component is inspired by the 
design of the TensorFlow Serving component. 

Requirements: • Shall receive a set of samples (composed of a set of feature values) 
representing a monitoring window (defined by the centralized attack 
detector) over which the anomaly detection algorithm is run; 



D2.1 - Preliminary requirements, architecture design, techno-economic studies, 
and data models 

 

© 2021 - 2023 TeraFlow Consortium Parties  Page 58 of 81 

• Shall return the cluster indices for each one of the samples, where the index -
1 represents an anomaly, and cluster indices greater or equal to zero are 
considered normal samples. 

References: • DBSCAN Serving 
• TensorFlow Serving 

Responsible 
(and 
collaborators): 

CHAL 

Provided 
Operations: 

rpc Detect (DetectionRequest) returns (DetectionResponse) {} 

Internal 
models: 

This component contains four models: Metric, Sample, DetectionRequest and 
DetectionResponse (see for reference Figure 18). 

 

 

Figure 18 Attack inference data model 

6.3.2.4. L3 Centralized Attack Detector 

Name: L3 Centralized Attack Detector 
Objective: This component provides attack detection capabilities at the IP layer and a 

consolidated attack detection mechanism based on the Distributed Attack 
Detector. The Centralized Attack Detector utilizes machine learning algorithms to 
classify the input data received from the Distributed Attack Detector component 
and sends the predictions to the Attack Mitigator. 

Requirements: • Shall consume/subscribe to security-related data from the TeraFlow 
Monitoring core component.  

• Shall process the summarized flow KPIs from the monitoring component 
and generate a consolidated data plane security status.  

• Shall report detected attacks to the fast attack mitigation processor 
component. 

• Shall report security status to the TeraFlow Monitoring core component. 
 

References:  
Responsible 
(and 
collaborators): 

UPM, TID, NEC 

https://github.com/carlosnatalino/dbscan-serving-python
https://github.com/tensorflow/serving
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Provided 
Operations: 

rpc SendInput (L3CentralizedattackdetectorMetrics) returns (Empty) {} 
rpc GetOutput (Empty) returns (L3CentralizedattackdetectorModelOutput) {} 

Internal 
models: 

L3CentralizedAttackDetectorModelOutput and 
L3CentralizedAttackDetectorMetrics (see for reference Figure 19 and Figure 20). 

 

The L3 Centralized Attack Detector uses the l3_centralizedattackdetector.proto file for the protobuf 
messages which correspond to the following models. 

 

Figure 19 L3 Centralized Attack Detector Model Output 

 

Figure 20 L3 Centralized Attack Detector internal data model 

6.3.2.5. L3 Distributed Attack Detector 

Name: Distributed Attack Detector 
Objective: Detect attacks at remote sites (network edge) in a distributed fashion and 

classify them. The focus of attack detection in this component is the data plane 
attacks by analysing packets. 

Requirements: • Shall receive detailed monitoring data from packet processor devices. 



D2.1 - Preliminary requirements, architecture design, techno-economic studies, 
and data models 

 

© 2021 - 2023 TeraFlow Consortium Parties  Page 60 of 81 

• Shall generate summarized flow KPIs and send them to 
appropriate/subscribed components such as the centralized attack detector. 

• Shall report detected attacks to the fast attack mitigation processor 
component. 

References:  
Responsible 
(and 
collaborators): 

UPM, TID 

Provided 
Operations: 

This component does not deploy a gRPC server. 

Internal 
models: 

Only provides operations. Data models belong to service, monitoring, and fast 
attack mitigation processor. 

 

6.3.2.6. L3 Attack Mitigator 

Name: L3 Attack Mitigation Processor 
Objective: This component is responsible for computing viable attack remediation 

solutions, depending on the detected attack by other components. It receives 
per connection information from the Centralized attack detector. In the current 
version, the attack mitigator has only been tailored to communicate correctly 
with the Automation component and a placeholder has been crafted in place of 
the mitigation strategy (i.e., a print trace). 

Requirements: • Shall consume/subscribe to security-related data from the TeraFlow 
Monitoring core component.  

• Shall receive attack notifications from the centralized and distributed 
attack detection components. Currently only receives from the 
distributed attack detection component. 

• Shall communicate with the Automation & Policy Manager component 
to perform attack countermeasures. This is not yet implemented. 

 
References:  
Responsible 
(and 
collaborators): 

UPM, TID, NEC 

Provided 
Operations: 

rpc SendOutput (L3AttackmitigatorOutput) returns (context.Empty) {} 
rpc GetMitigation (context.Empty) returns (context.Empty) {} 

Internal 
models: 

L3AttackMitigatorOutput (see for reference Figure 21). 

 

The L3 Attack Mitigator uses the l3_attackmitigator.proto file for the protobuf messages which 
correspond to the following model. 
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Figure 21 L3 Attack Mitigator Output data model 

 

6.3.2.7. Compute integration 

Name: Compute 
Objective: It allows ETSI  OpenSource MANO (OSM) SDN/WIM connector. It implements the 

standard IETF RFC 8466 "A YANG Data Model for Layer 2 Virtual Private Network 
(L2VPN) Service Delivery". It provides the endpoints and the necessary details to 
request the Layer 2 service. It supports L2VPN lifecycle management. 

Requirements: Allow OSM to perform the necessary WIM operations. 
References: RFC 8466 (ietf-l2vpn-svc.yang) 
Responsible 
(and 
collaborators): 

CTTC 

Provided 
Operations: 

rpc CheckCredentials (context.TeraFlowController) returns 
(context.AuthenticationResult) {} 
rpc GetConnectivityServiceStatus (context.ServiceId) returns 
(context.ServiceStatus) {} 
rpc CreateConnectivityService (context.Service) returns (context.ServiceId) {} 
rpc EditConnectivityService (context.Service) returns (context.ServiceId ) {} 
rpc DeleteConnectivityService (context.Service) returns (context.Empty ) {} 
rpc GetAllActiveConnectivityServices (context.Empty) returns 
(context.ServiceIdList) {} 
rpc ClearAllConnectivityServices (context.Empty) returns (context.Empty) {} 

Internal 
models: 

Only provides operations. Data models belong to context and service. 

 

6.3.2.8. Inter-Domain 

Name: Inter-domain 
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Objective: Enable interaction of a TeraFlow OS instance with peer TeraFlow OS 
instances which manage different network domains to create E2E TN 
slicing services. 

Requirements: [REQ-INT-01] - [REQ-INT-09] 
[align more with current capabilities outlined in the workflows] 

References: IETF: https://datatracker.ietf.org/doc/rfc8299   , 
https://datatracker.ietf.org/doc/rfc8453/ 
https://datatracker.ietf.org/doc/draft-ietf-teas-ietf-network-slices/02/ 
  

Responsible (and 
collaborators): 

TNOR, NTNU, CTTC 

Provided 
Operations: 

• Authenticate (context.TeraFlowController) returns 
(context.AuthenticationResult) {} 

• LookUpSlice(slice.TransportSliceRequest) returns (SliceResponse) {} 
//Slice component or from interdomain component 

• OrderSliceFromCatalog(slice.TransportSliceRequest) returns 
(SliceResponse) {} 

• CreateSliceAndAddToCatalog(slice.TransportSliceRequest) returns 
(SliceResponse) {} 

Internal models: Only provides operations. Data models belong to context and service. 
 

The inter-domain component allows the interaction of a TeraFlow OS instance with peer TeraFlow OS 
instances which manage different network domains. The inter-domain communication services can 
be classified into two types: inter-domain between administrative domains vs. inter-domain between 
technology domains (within one administrative domain), as shown in Figure 23. Depending on the 
type, different governance models are needed before defining the micro-services and corresponding 
requirements. In this section, we focus on Type I (Figure 23). 

To achieve objectives, the proposed inter-domain component leverages existing data models related 
to the context and slice components. The main operations include the authentication required prior 
to the information exchange between inter-domain components as well as interaction with the slice 
catalogue. Interactions with the slice catalogue include querying the catalogue (LookUpSlice), 
requesting the instantiation of an existing slice (OrderSliceFromCatalog), and the creation of a new 
slice as well as its inclusion into the catalogue (CreateSliceAndAddToCatalog). 

Figure 22 Different types of inter-domain communication. 

https://datatracker.ietf.org/doc/rfc8299
https://datatracker.ietf.org/doc/rfc8453/
https://datatracker.ietf.org/doc/draft-ietf-teas-ietf-network-slices/02/
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6.3.3. Cloud Orchestrator Features 

In this section, we present several features that are not provided by any component, but they are 
related to the selected technology (Kubernetes). These features are: auto-scaling, self-healing, and 
load balancing. 

6.3.3.1. Auto-Scaling 

The Auto-Scaling component focuses on the autonomous replication of micro-services to support high 
amount of load in terms of incoming requests.  

The Horizontal Pod Autoscaler (HPA) automatically scales the number of Pods in a Pod deployment 
based on observed metrics (e.g., CPU utilization). Through integration with external mechanisms, it 
can also support autoscaling using custom metrics support, such as application-provided metrics. 

6.3.3.2. Self-Healing 

The Self-Healing component monitors micro-services and per-flow status to apply healing mechanisms 
(e.g., component restart, flow redirection) both from a control and a data plane perspective.  

We will use two features from Kubernetes for providing self-healing mechanisms: liveness and 
readiness probes. The kubelet uses liveness probes to know when to restart a container. The kubelet 
uses readiness probes to know when a container is ready to start accepting traffic. Both features will 
be included in each Pod by usage of the Google Health grpc [GRPC21]. 

6.3.3.3. Load Balancing 

Load-balancing allows the distribution of flow and slice requests among the micro-services component 
replicas.  

Kubernetes implements load balancing as a load distribution mechanism. It uses two methods of load 
distribution, which are easy to operate through the kube-proxy feature.  
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7. Data Models 
This section describes the selected data models to be used as both external (including NorthBound 
and SouthBound) and internal interfaces. 

7.1. External Interfaces and Data Models 

The external interfaces are the ones offered to be consumed from external components of TeraFlow 
and typically use NETCONF or RESTCONF protocols. 

7.1.1. NorthBound Interfaces (NBI) 

Several interfaces are proposed to be used as NorthBound Interfaces, being summarized in L3/L2 
network models, Traffic Engineering (TE) tunnels, and IETF Transport Network Slices. 

7.1.1.1. IETF L3/L2 Network Model 

Network Models [BAR21a] are used to interact with the network controllers. Such models are used to 
instantiate the service in the network. Network models are used to provide an intermediate level of 
abstraction between what the customer requires, and the configuration implemented in the 
underlying network nodes. It provides the notion of a network service, which really is a set of 
configurations in the devices that happen to realize the customer needs. It is important to highlight 
that the services of the network models only exist in the controller. In the network nodes, protocols, 
routing instances, tunnels, routing profiles, access control lists, etc., for example, are configured to 
implement such service. Also, note that due to the separation of roles, the assignment of resources, 
for example, selecting the right interface for a customer or choosing an address or taking the decision 
of giving or not certain bandwidth is a role of the service orchestration layer. The network models are 
a good base to define the Resource-Facing services used by OSS applications. 

The L3NM model provides a network-centric view of L3VPN services [BARb]. L3NM is meant to be used 
by a Network Controller to derive the configuration information that will be sent to relevant network 
devices. 

The L2NM YANG module provides representation of the Layer 2 VPN Service from a network 
standpoint [BAR21c]. The module is meant to be used by a Network Controller to derive the 
configuration information that will be sent to relevant network devices. 

 

7.1.1.2. IETF Traffic Engineering Tunnels 

TE [SAA21] is a YANG data model for the configuration and management of Traffic Engineering (TE) 
tunnels, Label Switched Paths (LSPs), and interfaces have been part of the TEAS working group in the 
IETF. The model is divided into YANG modules that classify data into generic, device-specific, 
technology agnostic, and technology-specific elements. 



D2.1 - Preliminary requirements, architecture design, techno-economic studies, 
and data models 

 

© 2021 - 2023 TeraFlow Consortium Parties  Page 65 of 81 

7.1.1.3. IETF Transport Network Slice 

A transport network slice will consist of a set of endpoints (e.g., CEs), a connectivity matrix between 
subsets of these endpoints service level behaviours requested for each sender on the connectivity 
matrix [FAR21]. The connectivity between the endpoints might be point-to-point, point-to-multipoint 
or multipoint-to-multipoint. Often these slices will be used to satisfy network behaviour defined in a 
Service Level Agreement (SLA) [FAR21]. 

Several data models might be considered, but our first implementation and preliminary results might 
be obtained from [LIU21]. 

7.1.2. SouthBound Interfaces (SBI) 

In this section, the provided SouthBound interface are discussed. More information is provided in D3.1 
in Device component architecture description. 

7.1.2.1. ONF Transport API Driver  

We consider the use of ONF Transport API 2.1 to interact with Open Line System (OLS) Controllers in 
charge of managing underlying optical transport networks. 

7.1.2.2. ONF TR-532 Microwave 

We consider the use of a REST API to interact with a SDN Microwave (MW) Domain Controller, which 
has a network-level view of the underlying MW domain. The SDN MW controller interacts with 
microwave network elements using ONF TR-532 data models. Details are provided in D3.1. 

7.1.2.3. OpenConfig 

Routers will be configured and controlled using OpenConfig parameters that are implemented in 
NETCONF server. It will be supported by DRX-30 IP/MPLS routers. 

7.1.2.4. ONOS P4 

TeraFlow embraces the ONF initiatives around P4 by integrating ONOS, Stratum, and P4 into the 
TeraFlow ecosystem. In D3.1, we describe how the TeraFlow SDN controller will cooperate with ONOS 
to manage next-generation SDN whiteboxes based on the P4 paradigm. 

7.2. Internal Data Models 

Google Remote Procedure Calls (gRPC) [BRE19] is a protocol based on HTTP/2 as a transport protocol 
and it uses protocol buffers encodings for transported messages. As it is based on HTTP/2 transport 
protocol and uses byte-oriented encoding, it introduces low latency. gRPC has been used in highly 
scalable and distributed systems. It has been decided to be used as internal protocol in TeraFlow SDN 
Controller. Data models for gRPC are described using Protocol Buffers.  
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Protocol Buffers are a language-neutral, platform-neutral extensible mechanism for serializing 
structured data [PRO21]. They allow to model the data structures in a similar manner as in YANG. Its 
encoding in byte-oriented messages increases the efficiency compared to XML/JSON encodings. An 
Open-Source framework is provided to handle protocol buffers in multiple languages, such as python, 
Go, C++, Java, Erlang. 

Figure 23 provides an example of a topology information model. In this example, a topology service is 
described, and it offers a GetTopology RPC that provides a topology structure. Each structure is 
described in message keyword. Topology message provides a list of node messages (a list is declared 
using repeated keyword) and a list of link messages. A node message includes an identifier and a list 
of port messages. Port messages include a port identifier and a layer protocol name. Link messages 
include a link identifier and references to source and target nodes and ports. 

 

 
Figure 23 Example of protocol buffer 

All protocol buffers are part of TeraFlow SDN source code, and they are available at: 
https://gitlab.com/teraflow-h2020/controller/-/tree/develop/proto 

 

 

 

 

 

 

 

https://gitlab.com/teraflow-h2020/controller/-/tree/develop/proto
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8. Use Case Workflows 
In this section, we provide several specific workflows to demonstrate the interaction among multiple 
components, as well as the underlying infrastructure devices, other controllers, etc. 

8.1. L3VPN Service Provisioning 

To configure a L3VPN, the TeraFlow SDN Controller first creates an instance of the VPN service, 
specifying attributes, import and export profiles, and the list of VPN endpoints that participate in the 
service. In a second step, the TeraFlow SDN Controller communicates with each of the network 
elements hosting the endpoints, such as virtual or physical routers, and for each of them: 

- configures a VRF 
- attaches (logical or physical) interfaces to the VRF 
- configures the routing protocols to enable PE-PE and PE-CE communications over the relevant 

interfaces 
- configures any other additional parameters (QoS, etc).  

Figure 24 shows an example of this workflow. 

 

Figure 24 L3VPN Service Provisioning sequence diagram 

8.2. Monitoring 

The monitoring component collects metrics from the different components and devices, producing 
valuable data that can be used by other services and components to improve service performance, 
detect anomalies, or just for analytic purposes. 

Figure 25 depicts an exemplary workflow for monitoring a generic device. This workflow involves 
different entities: the SDN Agent that is the generic device that will be monitored; the Context 
component that stores the configuration and attributes of the network elements managed in 
TeraFlow; the Device component that interfaces with the monitored devices; the monitoring 
component with its databases (MgmtDB and MetricsDB), the data visualization platform of the 
monitored data and the user that visualizes these data. 
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In first place, the Monitoring component starts to listen the Context Management service about new 
events in the devices, these events will be accessed in the queue EventQueue and will be translated 
to KpiRequests. Then, the Monitoring service process and registers each KpiRequest as a KPI in the 
Management DB and just after that, requests to start monitoring each KPI sending a MonitorDeviceKpi 
to the Device component. The Device service interfaces between the TeraFlow OS and the SDN agents, 
retrieving the information from the end devices and sending the samples to the Monitoring service 
through the IncludeKpi. Subsequently, the received samples are introduced in the MetricsDB by the 
Monitoring service to be lately accessed and visualized through the Data Viewer platform. 

 

Figure 25 Monitoring sequence diagram 

8.3. Service Restoration 

Upon the deployment of a service, the TeraFlow controller invokes service monitoring routines which 
allow the service owner to select specific KPIs, subscribe to these KPIs, thus retrieve relevant 
monitoring information. To avoid manual effort upon the reception of an out-of-bounds performance 
metric for a given service, monitoring information can also be streamed towards an automated service 
restoration module, as shown in Figure 26. This module queries the monitoring service to collect a set 
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of KPIs for a given service (also through the device service). Then, an internal routine of the automated 
service restoration module checks the values of the retrieved KPIs against a set of “expected” KPI 
boundaries. If an out-of-bounds KPI is detected, the service restoration module performs the 
necessary service update, while ensuring that the affected devices are reconfigured via the device 
service. 

 

Figure 26 Service restoration sequence diagram. 

8.4. Traffic Engineering 

Figure 27 shows the different phases of the TE component: Building Traffic Engineering Database 
(TED), Registering PCE, Requesting Label Switched Paths (LSP) and Deleting LSP.  

The TED is constructed by requesting the topological information to Context component and then 
building the TED internally in TE component. Later, the TE component requests to Context the 
available devices and it registers as PCE to each router device, that acts as PCC. 

An SR LSP might be requested from Service component, resulting in a best path computation, and 
later triggering of the LSP to the routers. Finally, the SR LSP might be deleted from Service component 
and the Delete LSP request is forwarded to the routers. 
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Figure 27 Traffic Engineering Sequence Diagram 

8.5. Automation 

Figure 28 visualizes the necessary steps for adding a new device under the management umbrella of 
the TeraFlow SDN controller in a fully automated manner. The process begins with the Policy 
component issuing an “AddDevice” RPC to the Device component. This method initiates a connection 
with the requested device, and if successfully connected, the device driver obtains the device 
configuration. This configuration is turned into a DeviceConfig object and pushed to the Context 
database. Upon success, a “DEVICE_ADD” event is generated, notifying that a new device is associated 
with a TeraFlow device driver plugin. As a result, the Context component generates a notification 
through the “Events’ API”. This event is received by the Automation component, thus the ztpAdd RCP 
is automatically triggered as shown in Figure 28. First, the Automation component requests the new 
Device object from the Context database, which in turn results in a “getDevice” call to the Device 
component. Then, if this device is not already configured, the Automation component requests this 
device’s initial configuration parameters by issuing a “getInitialConfig” RPC to the Device component 
through the Context component. Upon the reception of an updated DeviceConfig object, the 
Automation component loops through the configuration entries of its local object and updates the 
relevant entries according to the newly fetched DeviceConfig object. Next, the updated device object 
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is pushed to the Device component and stored to the Context database via a “configureDevice” RPC. 
Upon success, the Automation component flips the DeviceStatus bit of the Device object to 
“ENABLED” and the respective ZTPDeviceState to “CREATED”, while also generating relevant events. 
Finally, these events can be consumed by other TeraFlow OS components to begin e.g., monitoring 
routines for this device. Note that, if the DeviceStatus of the newly arrived device is already ENABLED, 
the device is already provisioned, thus no action is taken by the ztpAdd RPC, while a relevant warning 
is issued. 

 

Figure 28 Zero-Touch Provisioning of a new device into TeraFlow OS. 
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8.6. Optical and L3 Centralized and Distributed Attack Detection 

The centralized and distributed attack detection and mitigation workflow will provide TeraFlow with 
a continuous assessment of the security status of optical and IP services. 

The distributed attack detector will be placed at remote sites, e.g., central offices, edge datacentres, 
and will receive IP traffic monitoring (e.g., by traffic mirroring) from co-located packet processors. The 
monitoring of IP traffic is expected to generate considerable traffic between the packet processors 
and the respective distributed attack detector. By deploying one instance of this component at each 
remote site, TeraFlow avoids transmitting the monitoring traffic across the network, reducing the 
network load, and potentially reducing the attack detection time. Once an attack is detected, the 
distributed attack detector notifies the attack mitigation process, providing a comprehensive 
characterization of the attack properties. Periodically, the distributed attack detector will also report 
summarized KPIs to the centralized attack detector with the purpose of enabling a holistic security 
assessment. This approach of sending summarized KPIs also removes the need to sending complete 
information about IP traffic to the centralized controller. 

The centralized attack detector will consolidate the information from multiple instances of the 
distributed attack detector with the optical performance monitoring performed over optical services. 
This will enable the centralized attack detector to monitor the optical services for physical-layer 
attacks, while also having a view on the security status of IP traffic. Based on the summarized KPIs 
received from the distributed attack detector, the centralized attack detector can also perform attack 
detection on the IP layer by using the consolidated IP summarized KPIs. Upon an attack detection, the 
centralized attack detector sends an attack description to the fast attack mitigation processor for it to 
compute a mitigation for the attack. 

 

Figure 29 Centralized and distributed attack detection and mitigation 

The fast attack mitigation processor, upon receiving an attack notification, is responsible for 
computing a viable attack mitigation, depending on the detected attack. For instance, if the attack 
detected is on the IP layer, one possible mitigation action is to block the flow that is carrying the 
malicious traffic. Another example is in the case of an optical physical layer attack, where a possible 



D2.1 - Preliminary requirements, architecture design, techno-economic studies, 
and data models 

 

© 2021 - 2023 TeraFlow Consortium Parties  Page 74 of 81 

approach would be to establish a new optical service avoiding the current spectrum and/or 
links/nodes. The realization of the attack mitigation strategy will be coordinated with the Automation 
component, which will be responsible for performing the necessary actions across the devices in the 
network to make sure that the mitigation takes place. 

In an initial implementation, the optical and the L3 workflows presented in Figure 29 will be 
implemented separately, i.e., the optical workflow will have its own components and the same for the 
IP/L3 workflow. This design decision is reflected in Section 6.3.2, where the component architecture 
for the optical and L3 workflows are described. In a future iteration, the centralized attack detector 
component for optical and L3 will be integrated to enable a cross-layer security assessment 
framework. 

8.7. DLT and Smart Contracts 

TeraFlow will deliver a permissioned distributed ledger that utilizes blockchains for network 
management. It will use blockchain technology to provide a trustworthy and resilient platform for 
storing, querying, and processing critical data about network resources and services owned and 
governed by different network entities. It will be privacy aware as well as transparent, resulting in an 
open, traceable, and fair sharing of network resources and services between stakeholders.  

The use of blockchains replaces centralized network management consisting of conventional database 
management systems. Major advantages are the elimination of trusted third parties that maintain the 
databases with single point of failures, and data provenance including data immutability and 
traceability.  

Smart contracts provide a universal basis to automate, simplify, and secure network management 
tasks that involve possibly sensitive data from multiple stakeholders of the network. Trust and multi-
tenancy are improved in the SDN controllers by introducing novel security mechanisms through the 
usage of smart contracts and secure consensus algorithms. Network and device data is not stored and 
processed in a central location; instead, a blockchain, which stores the data and the operations on the 
data, is copied and spread across multiple nodes, and each node updates its blockchain to reflect a 
requested change, often by executing a smart contract.  

The DLT operations are depicted in the sequence diagram in Figure 30. Services perform dual functions 
of reading from the DLT component and writing to the DLT component. The GetDLTstatus operations 
retrieves information from the blockchain and RecordtoDLT operation is used to write to the 
blockchain and the recorded information is shared among the DLT network components. 



D2.1 - Preliminary requirements, architecture design, techno-economic studies, 
and data models 

 

© 2021 - 2023 TeraFlow Consortium Parties  Page 75 of 81 

 

Figure 30 DLT sequence diagram 

8.8. Compute integration 

Figure 31 illustrates the integration of the Compute component of the Teraflow OS to interact with an 
external NFV Orchestrator, e.g., based on an OSM implementation. Specifically, it is depicted the 
integration to allow the NFV orchestrator requesting the creation of connectivity services over an 
underlying transport infrastructure (WAN) controlled/programmed by the SDN controlled offered by 
the Teraflow OS. By doing this, remote virtualized network functions (hosted at different cloud 
premises) and associated to a specific network service can be interconnected over the WAN. This 
integration between the NFV Orchestrator and the Compute component is supported over a defined 
REST API. Besides the creation of the network connectivity services, the API also supports other 
operations for handling the complete lifecycle management of such connections, i.e., deletion or 
update of active network services).  

For the operation of creating network connectivity service, different steps constitute the resulting 
workflow between the NFV Orchestrator and the Compute component. The step labelled by 1) is 
bound to the request sent by the NFV Orchestrator (OSM) via a POST message to trigger the 
connectivity service (i.e., create_connectivity_service()). This is referred to as the creation of the vpn 
service. The POST message carries a set of required JSON-encoded objects, namely, the vpn_id (which 
contains an uuid), the vpn_svc_type (set to virtual private wire service, vpws), the svc_topo (set to 
any-to-any) and the customer-name (carrying OSM). After processing this message, the Compute 
component creates an entry for that network connectivity service. To unambiguously refer to that 
entry a service identifier (serviced) is created and set to the received vpn_id. Next, the Compute 
component responds to the NFV Orchestrator that the registration of the vpn service succeeded (i.e., 
step labelled by 2)) 
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Figure 31 NFV Service deployment using WIM 

Next, the OSM sends another POST message in step 3) with the required information about the 
connection service and its vpn attachment endpoints. This entails specifying the connection_point (i.e., 
vlan), and the endpoints using the bearer and the site. These network connectivity service details are 
then updated at the Compute component and used to construct the gRPC createService message (step 
4). Once the network connectivity service is successfully established by other Teraflow OS components 
(step 5)), the Compute component responds to the NFV Orchestrator informing that the network 
connectivity service is active, i.e., step 6). 

8.9. Inter-Domain Services 

Key functions of the inter-domain component are related to service lifecycle management, including 
the preparation and activation of a service as well as its modification during run time. Furthermore, 
monitoring of service KPIs across domains ensures that end-to-end requirements are met. 

Figure 32 displays the workflow regarding service preparation and activation. The workflow is initiated 
by a customer which can be any entity consuming TeraFlow services such as the OSS or other 
management domains including end-to-end service management. The customer’s request is handled 
by the slice component which forwards the end-to-end transport slice request to the inter-domain 
component. The inter-domain component, in turn, decomposes the end-to-end transport slice into 
per-domain sub-slices and requests their creation in the respective TeraFlow domains through the 
corresponding inter-domain components. This inter-domain communication is performed in a secure 
manner by mutual authentication prior to the exchange of sub-slice requests. In case an appropriate 
sub-slice can be provided, the remote inter-domain component informs the requesting inter-domain 
component and the latter can order the slice. Otherwise, the creation of a corresponding slice is 
initiated alongside its insertion into the catalogue and establishment of connectivity, triggering 
interaction with slice and service components, respectively. Finally, the same procedure of sub-slice 
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creation and connection establishment is performed at the local TeraFlow domain (domain #A in the 
figure). 

 

Figure 32 Inter-domain service preparation and activation 

 

Figure 33 outlines the workflow of modifying a service. The process is triggered by an inter-domain 
component which sends a service modification request to a remote inter-domain component. Upon 
receiving this request, the remote inter-domain component evaluates whether the modification (e.g., 
an increase of bandwidth) can be supported. Depending on the outcome of the evaluation, the 
modification is either carried out by propagating the request to the involved slice and service 
components, or the requesting inter-domain component is informed about the negative outcome. 

 

 

Figure 33 Inter-domain service modification 

Finally, the inter-domain component leverages the monitoring service to obtain service- and/or 
device-level KPIs on a per-domain basis to ensure that end-to-end requirements are met. To this end, 
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the inter-domain component subscribes to the relevant KPIs from the monitoring component in its 
domain and synchronizes them with remote inter-domain components. This process is summarized in 
Figure 34. 

 

 

Figure 34 Inter-domain service synchronization/monitoring 
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9. Conclusions and Next Steps 
This deliverable includes the methodology to be applied in TeraFlow, initial use case definitions, 
requirement elicitation, the draft architecture to be used in WP3 and WP4 for the release of TeraFlow 
OS v1. In addition, data models for the different components and interfaces are also detailed and use 
case-specific workflows have been described. 

This deliverable includes all the necessary architecture definitions and detailed design descriptions to 
provide the initial TeraFlow features. TeraFlow follows an agile methodology to produce three major 
software releases: v1 will be released at M12, v2 will be released at M24, and v2.1 will be released at 
M30. These releases will cover the length of the technical work packages (WP3 and WP4).  

For a detailed view of the performed work and further work of the different presented components, 
please refer to D3.1 and D4.1, which provide more technical details and preliminary obtained results 
of the different components. Also, the expected work for Y2-Y3 is included. 

To support software development and the ability to make releases with minimal impact on the running 
services, TeraFlow will adopt a CI/ CD strategy described in D5.1. The major software releases will 
deliver the main functionality, while the minor releases will provide bug fixes and possibly additional 
features required by the currently operating experiments.  
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